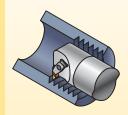

Резьбонарезание

Рекомендации по применению	D2-D3
Система Тор Notch для резьбонарезания	D4-D43
Система Laydown для резьбонарезания	D44-D87
Техническая информация по резьбонарезанию	D88-D110

Инструмент Top Notch для нарезания наружной резьбы

Державки с прямоугольным хвостовиком:

• Метрическая система — 10-32 мм


Гребенчатые пластины (полный профиль):

резьба UN с шагом 32–7 ниток/дюйм; резьба ISO с шагом 1,5–3,0 мм

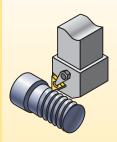
Пластины с неполным профилем 60° — плоская вершина (NTF и NTK):

резьба UN с шагом 44–4,5 ниток/дюйм; резьба ISO с шагом 0,6–5,5 мм

Инструмент Top Notch для нарезания внутренней резьбы

Расточные оправки:

- Метрическая система 10-50 мм
- Минимальный диаметр отверстия —11,5 мм
- Сталь


Гребенчатые пластины (полный профиль):

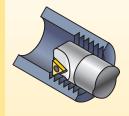
резьба UN с шагом 16-8 ниток/дюйм; резьба ISO с шагом 1,5-3,0 мм

Пластины с неполным профилем 60°— плоская вершина (NT-1L, NTF и NTK): резьба UN с шагом 24–4,5 ниток/дюйм; резьба ISO с шагом 1,0–5,5 мм

Инструмент LT Laydown для нарезания наружной резьбы

Державки с прямоугольным хвостовиком:

• Метрическая система — 8-40 мм


Гребенчатые пластины (полный профиль):

резьба UN с шагом 48-8 ниток/дюйм; резьба ISO с шагом 0,5-5,0 мм

Пластины с неполным профилем 60°:

резьба UN с шагом 48–4 нитки/дюйм; резьба ISO с шагом 0,5–6,0 мм

Инструмент LT Laydown для нарезания внутренней резьбы

Расточные оправки:

- Метрическая система 12-50 мм
- Минимальный диаметр отверстия —13 мм
- Сталь и твердый сплав

Гребенчатые пластины (полный профиль) и неполный профиль:

резьба UN с шагом 48-8 ниток/дюйм; резьба ISO с шагом 0,5-5,0 мм

Пластины с неполным профилем 60°:

резьба UN с шагом 48-4 нитки/дюйм; резьба ISO с шагом 0,5-6,0 мм

Пластины с неполным профилем 55°:

резьба UN с шагом 48-5 ниток/дюйм; резьба ISO с шагом 0,5-5,0 мм

Инструментальная оснастка Тор Notch™ для резьбонарезания

Надежное решение для высокопроизводительного резьбонарезания!

Система Тор Notch в сочетании с технологией Веуопот™ обеспечивают стабильную производительность инструмента и превосходное крепление пластин для нарезания резьбы практически в любых материалах. Учитывая большой выбор имеющихся сегодня в наличии геометрий пластин и марок твердых сплавов, система Тор Notch является лучшим выбором для нарезания резьбы.

Особенности и преимущества

Система резьбонарезания Top Notch

- Лучший выбор для резьбонарезания в тяжелых условиях, например, для обработки трапецеидальных резьб Acme и Buttress, и резьб API. Тор Notch также идеально подходит для нарезания резьбы с крупным шагом и многозубого нарезания резьбы.
- Самый обширный в отрасли выбор геометрий пластин и сплавов.
- Жесткая конструкция крепления пластины гарантирует высокую стойкость инструмента и высокое качество получаемой резьбы.
- Простота конструкции системы Тор Notch исключает необходимость выбора опорной пластины для обеспечения соответствующего угла наклона винтовой линии резьбы. Это помогает избежать ошибок при работе в цеху.
- Использование одних и тех же державок и расточных оправок Тор Notch с резьбонарезными или канавочными пластинами позволяет сократить складские запасы.
- Использование пластин Top Notch со стружколомом исключает образование длинной витой стружки.
- Отличный выбор для специальных резьбонарезных пластин и державок.

Прецизионно шлифованный профиль резьбонарезной пластины

- Минимизирует нарост на кромках.
- Повышает точность резания при обработке большинства групп материалов.
- Снижает усилия резания.
- Обеспечивает получение точной высококачественной резьбы.

ПРИМЕЧАНИЕ. Державки обеспечивают угол наклона пластин до 3° для формирования заднего угла с открытой стороны.

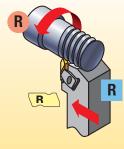
Превосходное стружкодробление

- Исключает образование длинной витой стружки.
- Идеальное решение для внутреннего резьбонарезания.
- В наличии имеются пластины с неполным профилем для обеспечения формы резьбы с углом конуса 60°.

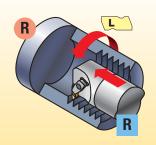
Шаг 1 • Выбор метода резьбонарезания и исполнения инструмента

Необходимые исходные данные:

- Наружная/внутренняя обработка.
- Направление вращения шпинделя/исполнение резьбы.
- Направление подачи.


исполнение резьбы

исполнение державки


исполнение пластины

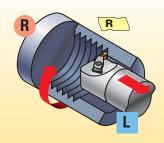
Направление подачи в сторону зажимного патрона • РЕКОМЕНДУЕМЫЙ ВАРИАНТ

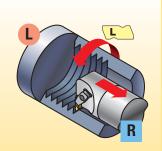
наружная левая резьба

наружная правая резьба


внутренняя левая резьба

внутренняя правая резьба


Направление подачи в сторону от зажимного патрона



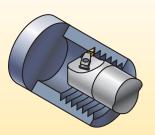
наружная левая резьба

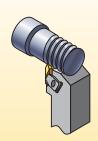
внутренняя правая резьба

внутренняя левая резьба

Шаг 2 • Выбор державки из каталога

Размер пластины должен соответствовать эталонной пластине выбранной державки:

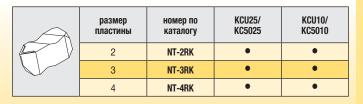

Выберите соответствующую державку под размер пластины и ее исполнение:


Необходимые исходные данные:

- Наружная/внутренняя обработка.
- Минимальный диаметр отверстия (для внутренней резьбы).
- Исполнение инструмента.
- Размер пластины (эталонная пластина).

номер по каталогу	эталонная пластина
NSR-163D	N.3R
NSR-164D	N.4R

ПРИМЕЧАНИЕ. Державки и расточные оправки Тор Notch приведены в таблицах вместе с эталонными пластинами, позволяющими определить размер и исполнение режущей пластины. Они совместимы с резьбонарезными и канавочными пластинами такого же размера.


ПРИМЕЧАНИЕ. Оптимизируйте процесс резьбонарезания, используя соответствующий угол и рекомендуемые значения врезания.

См. раздел «Техническая информация» на стр. D88—D110 настоящего каталога. Для внутреннего резьбонарезания минимальный диаметр отверстия зависит от типа резьбы. Подробности см. на стр. D102.

Шаг 3 • Выбор пластины

- Обзор пластин для резьбонарезания приведен на стр. D11.
- Выберите гребенчатые пластины для полностью контролируемой формы резьбы, включая диаметр. Благодаря использованию пластин полного профиля исключается необходимость снятия заусенцев.
- Пластины с неполным профилем без гребня могут нарезать резьбу с различным шагом.
- Запишите размер пластины для выбора державки.

Шаг 4 • Выбор сплава и скорости резания

Рекомендации по выбору сплава и скорости резания — м/мин

обрабатываемый материал	сталь	нержавеющая сталь	чугун	цветные металлы	жаропрочные сплавы
геометрия пластины	стружколомающая геометрия или нейтральное исполнение	стружколомающая или положительная геометрия	нейтральное исполнение	положительная геометрия	положительная геометрия
оптимальные	KCU10/KC5010	KCU10/KC5010	KCU10/KC5010	KC5410	KCU10/KCU5010
режимы резания	70-260	90-245	60-245	90–550	30–150
лучший выбор	KCU25/KCU5025	KCU25/KCU5025	KCU25/KCU5025	KCU25/KCU5025	KCU25/KCU5025
	50–230	75–230	50–180	60–455	20–120

Примеры:

Положительная геометрия:

материал:

диаметр заготовки:

Стружколомающая геометрия: NT-К или NT-СК (только неполный профиль)

 Нейтральное исполнение:
 NT, NT-C, NTF, NTC, NJ, NJI

NT, NT-C, NTF, NTC, NJ, NJF, NDC-V, NA, NDC, NTB-A/B NTP, NTK, NJP, NJK

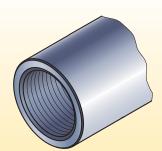
Пример резьбонарезания с использованием системы Top Notch:

операция: нарезание внутренней правой Рекомендации:

резьбы Асте 8 ниток/дюйм

легированная сталь

хорошие условия обработки, подача в


направлении зажимного патрона

 пластина:
 NA3L8

 сплав:
 КСU10

 размер пластины:
 3

расточная оправка: A40NER3
эталонная пластина: N.3L
скорость резания: 150 м/мин
количество проходов*: 12 проходов

^{*} Рекомендации по величине врезания приведены в разделе «Техническая информация» на стр. D97-D101.

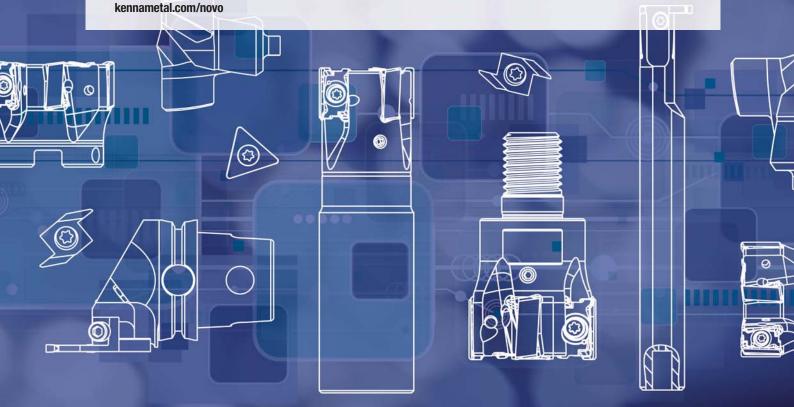
Резьбонарезание

Рекомендуемые начальные скорости резания [м/мин]

	оуппа ериала		K68		KCU10/KC5010		KCU25/KC5025			KC5410			
	0–1	-	-	-	135	200	260	105	165	230	-	-	-
	2	-	-	-	130	190	245	100	150	200	-	-	-
P	3	-	-	-	105	155	200	75	125	170	-	-	-
, r	4	_	-	-	70	120	160	60	95	130	_	-	-
	5	-	-	-	105	155	200	75	130	170	-	-	-
	6	-	-	-	70	120	160	50	90	130	_	_	-
	1	45	75	105	120	180	245	90	170	230	-	-	-
M	2	35	65	100	90	165	210	75	140	200	_	-	-
	3	35	65	100	90	165	210	75	135	200	-	_	_
	1	30	75	120	120	180	245	90	135	180	-	-	-
K	2	25	60	100	90	150	210	70	120	170	-	-	-
	3	20	55	90	60	105	150	50	85	120	-		-
	1–2	90	245	365	150	365	550	120	305	455	245	425	610
	3	45	75	105	90	135	180	60	105	150	90	150	210
N	4	60	120	180	120	305	455	100	200	305	120	305	455
	5	45	90	150	90	165	245	70	135	195	120	210	305
	6	35	75	120	120	210	305	100	170	245	120	245	365
	1	8	25	45	30	70	105	20	40	60	-	-	-
S	2	8	24	40	30	65	100	20	35	45	-	-	-
	3	8	24	40	30	65	100	20	35	45	-	-	-
	4	9	60	105	55	105	150	45	85	120	_		_
	1	-	-	-	30	45	60	-	-	-	-	-	-
н	2	-	-	-	15	30	45	-	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-	-	-	-
	4	_	_	-	_	_	-	-	_	-	_	_	-

ПРИМЕЧАНИЕ. Рекомендуемые НАЧАЛЬНЫЕ скорости резания указаны **жирным** шрифтом.

NOVO 3HAET CAD/CAM

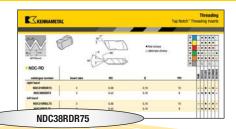

С использованием NOVO[™] Ваши CAD/CAM возможности станут более эффективными, рациональными и производительными.

До появления NOVO: программисту приходилось программировать последовательность обработки детали с использованием программного обеспечения CAD/CAM. После этого приходилось искать инструмент в каталоге с использованием устаревшего метода и затем вручную вводить параметры инструментальной оснастки из каталога в программное обеспечение CAD/CAM.

Такой процесс связан с большим количеством допущений; в программу вводится неполная информация о технологической оснастке.

Программа NOVO: помогает оператору найти правильный инструмент для металлообработки и автоматически интегрирует данные в систему CAD/CAM. Интеграция всех данных уменьшает время настройки станка и увеличивает производительность оборудования — в итоге Вы экономите время.

NOVO позволяет Вам подобрать правильный инструмент для Вашего оборудования, для каждого вида обработки. В результате Вы получаете качественные детали и высокую производительность на каждой операции.



Как расшифровать обозначение по каталогу?

Каждый символ в обозначении по каталогу отражает характерные особенности данного изделия. Ниже приведена расшифровка обозначений.

N

D Тип C

3

8RD

R Исполнение

пластины

75

Обозначение пластины

Лополнительная информация

Тип пластины

N — Top Notch*

резьбы

Дополнительная информация

- Резьба Buttress
- Мелкий шаг
- Укороченная трапецеидальная резьба Асте
- **С** Гребенчатая
- Положительный передний угол
- **К** С мелким шагом и положительным передним углом

Размер пластины

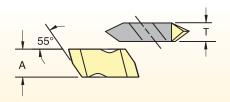
Отраслевое обозначение резьбы

Указывается форма обозначения, принятая Американским в буровой промышленности . (например, 10RD, 8RD, .038) пластины для резьбонарезания с контролируемым радиусом впадины с интервалом 0,001" (NJ, NJF, NJP, NJK) указывается

нефтяным институтом (АРІ) или используемая метрическая резьба М по стандарту ISO

— Правое

исполнение — Левое исполнение



Резьба API или NPT D

Резьба UNJ

V-образная резьба с углом 60°

V-образная резьба Whitworth с углом 55°

Размеры пластин Top Notch

Α	Т
ММ	ММ
2,54	2,54
5,56	3,81
8,74	4,95
11,51	6,48
17,48	9,65
11,51	9,73
7,93	11,13
	MM 2,54 5,56 8,74 11,51 17,48 11,51

NJF

NDC-V-M

NTC

- Число ниток резьбы на дюйм или шаг резьбы (для метрической системы)
- Пластина типа «А» или «В» для трапецеидальной резьбы Buttress
- Конусность на фут резьбы АРІ

Внутренняя резьба

Наружная резьба (используется только в случае, если внутренняя и наружная формы резьбы различаются)

Несколько зубьев

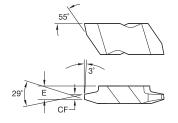
Стандартный стружкоотвод

Крупный шаг зубьев

Резьба для соединений, работающих без смазки и уплотнений

kennametal.com

^{*} Только собственный стандарт Kennametal.


	тип пластины							
стружколом — К	нейтральное исполнение	положительная геометрия	профиль резьбы	стандарт	класс точности	полный профиль	область применения	стр.
NT-K	NT (NTP NTP	Неполный профиль с углом 60°	-	-	нет	В основном применяется для резьбы с углом профиля 60° , такой как метрическая и UN, нарезаемой пластинами неполного профиля, предназначенными для формирования резьбы с различным шагом.	D19, D24
NT-CK			Неполный профиль с углом 60° — крупный шаг	-	-	нет	Резьба с углом профиля 60° с крупным шагом, такая как метрическая и UN, нарезаемая пластинами неполного профиля, предназначенными для формирования резьбы с различным шагом.	D21
	NTF	NTK NTK	Неполный профиль с углом 60° — мелкий шаг	-	-	нет	Резьба с углом профиля 60° с мелким шагом, такая как метрическая и UN, нарезаемая пластинами неполного профиля, предназначенными для формирования резьбы с различным шагом. — Возможность нарезания резьбы вблизи уступа.	D23
	NTU T		Неполный профиль с углом 60° — мелкий шаг	-	-	нет	Пластина с четырьмя режущими кромками для нарезания резьбы с неполным профилем с углом 60° — требует использования державки NSU для пластины размера 4U.	D24
	NTC-M		Метрическая система ISO	ISO R262, DIN 13	6g/6H	да	Широко используемая во всех отраслях промышленности V-образная метрическая резьба с углом профиля 60°.	D21
	NTC NTC		Американская резьба UN	ANSI (Американский национальный институт стандартов) В1.1:74	2A/2B	да	Широко используемая во всех отраслях промышленности V-образная дюймовая резьба с углом профиля 60°.	D20
	NJ NJ	NJP	UNJ	MIL-S-8879C	3A/3B	нет	Наружная резьба с контролируемым радиусом впадины профиля, применяемая в оборонной и аэрокосмической промышленности.	D17- D18
	NJF	NJK	UNJ — мелкий шаг	MIL-S-8879C	3A/3B	нет	Наружная резьба с контролируемым радиусом впадины профиля, применяемая в оборонной и аэрокосмической промышленности. Обеспечивает резьбонарезание вблизи уступа.	D17- D18
	NDC-V		NPT	ANSI/ACME B1.201: 1983	Станда- ртная NPT	да	Трубные резьбы по национальному стандарту для трубной арматуры	D16
	NDC- V-M		NPT — многозубый профиль	ANSI/ACME B1.201: 1983	Станда- ртная NPT	да	Высокопроизводительные многозубые пластины для нарезания резьбы NPT.	D16
	NWC-E		Whitworth, BSW, BSP	BS 84:1956, ISO 228/1:1982, DIN 259	Средний класс А	да	Широко используемая форма резьбы с углом профиля 55° для соединений газо- и водопроводов.	D25
	ND ND		Резьба АРІ для трубных соединений — неполный профиль	API SPEC. 7:1990	Станда- ртная АРІ	нет	V-образная резьба API с углом профиля 60° для трубных соединений в нефтяной и газовой промышленности, включая формы V038R, V040 и V050	D14
	NDC NDC		Резьба АРІ для трубных соединений — полный профиль	API SPEC. 7:1990	Станда- ртная АРІ	да	V-образная резьба АРI с углом профиля 60° для трубных соединений в нефтяной и газовой промышленности, включая формы V038R, V040 и V050 — полностью гребенчатая форма, включая конус	D14
	NDC- RD		Круглая резьба АРІ	API STD. 5B:1979	Станда- ртная API RD	да	V-образный профиль резьбы с углом 60° и большим радиусом для обсадных труб, систем трубопроводови и магистральных трубопроводов нефтегазовой промышленности, включая формы круглой резьбы 8 и 10.	D15
	NDC- RD-M		Круглая резьба АРІ — многозубая пластина	API STD. 5B:1979	Станда- ртная API RD	да	Высокопроизводительные многозубые пластины для нарезания круглой резьбы API	D15
	Нет данных		Трапецеидальная резьба Асте	ANSI (Американский национальный институт стандартов) В1.5:1988	3G	нет	Усеченная форма резьбы с углом профиля 29° для ходовых вингов, используемых в различных отраслях промышленности.	D12
	NAS NAS		Укороченная трапецеидальная резьба Асте	ANSI (Американский национальный институт стандартов) В1.8:1988	2G	нет	Усеченная форма резьбы с углом профиля 29° с небольшой глубиной для ходовых винтов, используемых в различных отраслях промышленности.	D13
	NTB-A		Американская резьба Buttress —с углом наклона профиля 7° (Push)	ANSI (Американский национальный институт стандартов) В1.9:1973	Класс 2	нет	Пилообразная форма профиля для упорных резьб, используемая в различных отраслях промышленности — пластина типа «А» предназначена для обработки резьб с углом наклона боковой стороны профиля 7°.	D19
	NTB-B		Американская резьба Buttress — с углом подъема профиля 45° (Pull)	ANSI (Американский национальный институт стандартов) В1.9:1973	Класс 2	нет	Пилообразная форма профиля для упорных резьб, используемая в различных отраслях промышленности — пластина типа «В» предназначена для обработки резьб с углом наклона боковой стороны профиля 45°	D20

kennametal.com D11

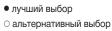
• лучші ○ альте

ий выбор	
ернативный выбор	

NA

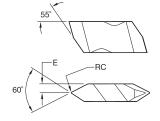
D12

номер по каталогу	размер пластины	RC	E	CF	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение			0.70	0.040	40						
NA3R10	3		3,79	0,810	10	-	•	•	-	•	_
NA3R12	3	_	3,79	0,719	12	-	•	-	-	•	-
NA3R16	3		3,79	0,523	16	-	•	-	-	-	_
NA3R4	3	_	3,38	2,222	4	-	-	•		•	-
NA3R5	3		3,79	1,750	5	_		•	-	•	_
NA3R6	3	_	3,79	1,438	6	-		•	1	•	-
NA3R8	3		3,79	1,044	8	-	•	-	_	•	_
NA4R4	4	_	5,13	2,223	4	-	-		1	•	-
NA4R5	4		5,13	1,750	5	_	-	-	_	•	_
NA4R6	4	_	5,13	1,438	6	-	-	-		•	-
NA6R25	6		7,19	3,635	2.5	-	-	-	-	•	_
NA6R2 NA6R3	6	_	7,19	4,577	2	-	•		1	•	-
111111111	6	_	7,19	3,007	3	-	-	•	- '	•	-
левое исполнение											
NA3L8	3	_	3,79	1,044	8	-	•	•	-	•	_
NA3L10	3	_	3,79	0,810	10	-	-			•	-
NA3L12	3		3,79	0,719	12	-	-	-	•	•	_
NA3L4	3	_	3,38	2,222	4	•	•	•	•	•	-
NA3L5	3		3,79	1,750	5	-	-	-	_	•	-
NA3L6 NA4L5	3	_	3,79	1,438	6	-	-			•	-
	4	_	5,13	1,750	5	-	-	-	-	•	_
NA4L6	4	_	5,13	1,438	6	-	-	_	-	•	-
NA4L8	4		5,13	1,044	8	-	-	•	-	-	_
NA4L4	4	_	5,13	2,223	4	-	•	_		-	-
NA6L3	6	_	7,19	3,007	3	-	-	•	-	•	-
NA6L25	6	_	7,19	3,635	2.5	-	-	•	-	-	-
NA6L2	6		7,19	4,577	2	-	-	•	•	•	-
NA3L16	3	_	3,79	0,523	16	-		-	-	-	-



Р		•	•	•	•	
M		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
S	•	•	•	•	•	0
Н		0		0		

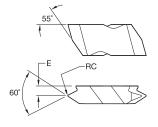
NAS


номер по каталогу	размер пластины	RC	E	CF	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение											
NAS3R10	3	_	3,79	0,940	10	-	•	-	•	•	-
NAS3R12	3	_	3,79	0,828	12	-	-	•	-	•	-
NAS3R16	3	_	3,79	0,605	16	-	-	-	-	•	-
NAS3R4	3	_	3,79	2,550	4	-	-	•	-	•	-
NAS3R5	3	_	3,79	2,014	5	-	•	-	-	•	-
NAS3R6	3	_	3,79	1,656	6	-	•	-	•	•	-
NAS3R8	3	_	3,79	1,209	8	-	•	•	•	•	-
левое исполнение											
NAS3L10	3	_	3,79	0,940	10	-	•	-	-	•	-
NAS3L12	3	_	3,79	0,828	12	-	-	-	-	•	-
NAS3L4	3	_	3,79	2,550	4	-	-	•	-	•	-
NAS3L5	3	_	3,79	2,014	5	-	•	-	-	•	_
NAS3L6	3	_	3,79	1,656	6	-	•	•	•	•	_
NAS3L8	3	_	3,79	1,209	8	-	•	•	•	•	-

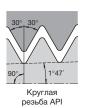

Резьба АРІ для трубных соединений

• лучший выбор

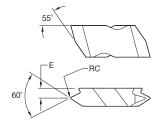
,	
\circ альтернативный	выбор


■ ND • Пластины с неполным профилем

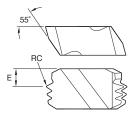
номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение										
ND3040R	3	0,45	2,08	5	-	-	-	-	•	-
ND3038R	3	0,90	2,08	4	-	-	-	-	•	-
ND4050R	4	0,57	3,25	4	-	-	•	-	-	-
левое исполнение										
ND3038L	3	0,90	2,08	4	-	-	-	-	•	-
ND3040L	3	0,45	2,08	5	-	-	•	-	-	-



■ NDC • Гребенчатые пластины

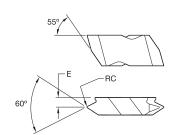

номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение										
NDC3040R3	3	0,45	3,73	5	-	-	-	-	•	-
NDC4040R3	4	0,45	3,73	5	-	-	-	-	•	-
NDC4050R2	4	0,57	4,65	4	-	-	-	-	•	-
NDC4050R3	4	0,57	4,65	4	-	-	-	-	•	-
NDC4038R2	4	0,90	4,65	4	-	-	-	-	•	-
левое исполнение										٦
NDC3040L3	3	0,45	3,73	5	-	-	-	•	-	-
NDC4050L2	4	0,57	4,65	4	-	-	-	-	•	-
NDC4038L2	4	0,90	4,65	4	-	-	-	-	•	-

)	альтернативный	выбор
_	and repriativibilities	рысор


Р		•	•	•	•	
М		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
S	•	•	•	•	•	С
Н		0		0		
						Г

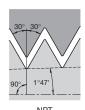
NDC-RD

номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение										
NDC310RDR75	3	0,36	3,18	10	-	-	-	-	•	-
NDC38RDR75	3	0,43	3,18	8	-	-	•	•	•	-
левое исполнение	•							ĺ		
NDC310RDL75	3	0,36	3,18	10	-	-	-	-	•	-
NDC38RDL75	3	0,43	3,18	8	-	-	•	•	•	-
										-

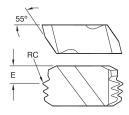


■ NDC-RD-M • Многозубые пластины

номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение										
NDC68RDR75M	6	0,41	2,62	8	-	•	-	-	-	-


• лучший выбор

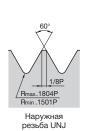
○ альтернативный выбор


Р		•		•	•	
М		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
S	•	•	•	•	•	
Н		0		0		
			П			Г

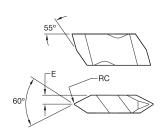
NDC-V

номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение										
NDC327VR75	3	0,05	3,66	27	-	•	-	-	-	-
NDC314VR75	3	0,08	3,66	14	-	•	-	-	-	-
NDC3115VR75	3	0,10	3,66	11.5	-	•	-	•	-	-
NDC38VR75	3	0,13	2,54	8	-	-	-	•	-	-
левое исполнение	•		·							
NDC3115VL75	3	0,10	3,66	11.5	-	•	-	•	-	-
NDC38VL75	3	0,13	2,54	8	-	-	-	•	-	-

■ NDC-V-М • Многозубые пластины


номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение										
NDC8115VR75M	8	0,10	2,59	11.5	-	•	-	-	-	-
NDC88VR75M	8	0,13	2,41	8	-	•	-	•	-	-
левое исполнение			,							П
NDC88VL75M	8	0,13	2,41	8	-	-	-	•	-	_

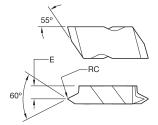
M K


N

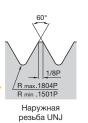
S

лучший выборальтернативный выбор

0	0		


NJ

номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм		шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	KC5010	KC5025 KC5410
правое исполн	нение											
NJ3010R16	3	0,25	2,49	_	_	16	_	•	-	•	-	• -
NJ3014R12	3	0,33	2,49	_	_	12	_	-	•	•	•	• -
NJ3020R8	3	0,49	2,49	_	_	8	_	-	-	-	•	• -
левое исполне	ение											
NJ3010L16	3	0,25	2,49	_	_	16	_	-	-	-	-	• -
NJ3014L12	3	0,33	2,49	_	_	12	_	-	-	-	•	• -
NJ3020L8	3	0,49	2,49	_	_	8	_	-	-	-	-	• -



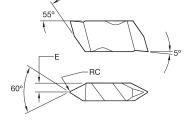
NJF

_	номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	KC5010	NC2023	2
	правое исполне	ение												4
	NJF3005R32	3	0,13	3,58	_	_	32	_	-	•	-	• -	- -	-
	NJF3006R28	3	0,15	3,58	_	_	28	_	-	-	- (•	• -	-
	NJF3007R24	3	0,17	3,58	_	_	24	_	-	-	-	•	• -	-
	NJF3008R20	3	0,20	3,58	_	_	20	_	-	-	- (•	-	
	NJF3009R18	3	0,22	3,58	_	_	18	_	•	-	•	•	• -	
_	NJF3010R16	3	0,25	3,58	_	_	16	_	-	-	- (•	-	-
	NJF3012R14	3	0,28	3,58	_	_	14	_	-	-	•	• •	• -	-
	левое исполнен	ние												
	NJF3007L24	3	0,17	3,58	_	_	24	_	-	-	- •	• -	- -	
	NJF3008L20	3	0,20	3,58	_	_	20	_	-	-	- (• -	- -	-]
	NJF3010L16	3	0,25	3,58	_	_	16	_	-	-	-	• -	- -	-

лучший выбор	
альтернативный выбор	

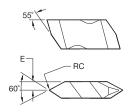
• .

Р		•	•	•	•	
М		•	•	•	•	
Κ	0	•	•	•	•	
N	•	•	0	0	0	•
S	•	•	•	•	•	0
Н		0		0		
	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$


NJK

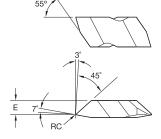
номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполн	нение												
NJK3005R32	3	0,13	3,58	_	_	32	_	-	-	-	•	• .	-
NJK3006R28	3	0,15	3,58	_	_	28	_	-	-	•	•	- -	-
NJK3007R24	3	0,17	3,58	_	_	24	_	-	-	•	•	• .	-
NJK3008R20	3	0,20	3,58	_	_	20	_	-	•	•	•	• .	-
NJK3009R18	3	0,22	3,58	_	_	18	_	-	-	-	•	•	-
NJK3010R16	3	0,25	3,58	_	_	16	_	-	-	•	•	• .	-
NJK3012R14	3	0,28	3,58	_	_	14	_	-	-	-	•	•	-
левое исполне	ение			•									
NJK3005L32	3	0,13	3,58	_	_	32	_	-	-	-	-	•	-
NJK3006L28	3	0,15	3,58	_	_	28	_	-	-	-	-	•	-

NJP


номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	ဂ္ဂ	KC5025 KC5410
правое исполн	ение											
NJP3010R16	3	0,25	2,49	_	_	16	_	-	•	- •	•	• -
NJP3014R12	3	0,33	2,49	_	_	12	_	•	•	•	•	• -
NJP3020R8	3	0,49	2,49	_	_	8	_	-	_		•	• -
левое исполне	ние											
NJP3010L16	3	0,25	2,49	_	_	16	_	-	-	- -	-	• -
NJP3014L12	3	0,33	2,49	_	_	12	_	-	-	_ (•	- -
NJP3020L8	3	0,49	2,49	_	_	8	_	-	-	- -	- -	• -

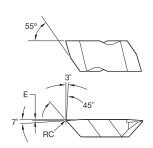
• лучший выбор ○ альтернативный выбор

Р		•	•	•	•	
М		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
S	•	•	•	•	•	0
Н		0		0		


NT

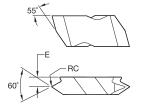
номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)		KCU10	KCU25	KC5010	KC5025 KC5410
правое исполнение										П		
NT2R	2	0,10	1,90	0,70-3,0	1,25-3,5	8-36	7-20	•	•	•	•	• -
NT3R	3	0,17	2,49	1,25-4,0	2,0-5,0	6-20	5-12	•	•	•	•	• -
NT4R	4	0,17	3,25	1,25-6,25	2,0-6,25	4-20	4-12	•	•	•	•	• -
левое исполнение												
NT2L	2	0,10	1,90	0,70-3,0	1,25-3,5	8-36	7-20	•	•	•	•	• -
NT3L	3	0,17	2,49	1,25-4,0	2,0-5,0	6-20	5-12	•	•	•	•	• -
NT4L	4	0,17	3,25	1,25-6,25	2,0-6,25	4-20	4-12	•	•	•	•	• -

Американская резьба Buttress (Push)


NTB-A

номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	20	KC5410
правое исполнение										
NTB2RA	2	0,08	3,20	16-20	•	-	-	-	-	-
NTB3RA	3	0,17	4,17	8-16	-	•	-	-	•	-
NTB4RA	4	0,25	5,23	4-6	-	•	-	-	-	-
левое исполнение										
NTB3LA	3	0,17	4,17	8-16	•	-	-	•	•	_

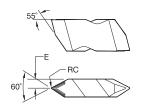
лучший выборальтернативный выбор


Р		•	•	•	•	
M		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
s	•	•	•	•	•	0
Н		0		0		
		$\overline{}$	$\overline{}$	$\overline{}$		

NTB-B

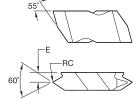
номер по каталогу	размер пластины	RC	E	ниток/дюйм	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнение										
NTB2RB	2	0,08	0,25	16-20	-	-	-	•	- -	-
NTB3R12B	3	0,16	2,49	12	-	-	-	•	- -	-
NTB3RB	3	0,17	0,31	8-16	•	•	•	•	•	_
NTB4RB	4	0,25	0,41	4-6	-	•	-	•	• -	-
левое исполнение										
NTB2LB	2	0,08	0,25	16-20	-	•	-	•	- -	-
NTB3L12B	3	0,16	2,49	12	-	-	-	•	- -	-
NTB3LB	3	0,17	0,31	8-16	•	•	-	•	• -	_
NTB4LB	4	0,25	0,41	4-6	-	-	_	•	•	-
	•									

NTC-I


номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	드	KCU25	KC5010	KC5025	KC5410
правое исполн	ение												
NTC3R12I	3	0,10	3,76	_	_	_	12	-	-	-	-	•	-
левое исполне	ние												
NTC3L12I	3	0,10	3,76	_	_	_	12	-	-	-1	-	•	-
NTC3L14I	3	0,09	3,76	_	_	_	14	-	-	-	-	•	-
NTC3L16I	3	0,08	3,76	_	_	_	16	-	-	-1	-	•	-
NTC3L8I	3	0,18	2,72	_	_	_	8	-	-	-	-	•	-
NTC3L10I	3	0,13	2,72	_	_	_	10	_	-	-1	-	•	-

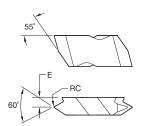
лучший выбор○ альтернативный выбор

Р		•	•	•	•	
М		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
s	•	•	•	•	•	0
Н		0		0		
	П	П				Г


■ NT-CK

номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполне	ение												
NT3RCK	3	0,34	2,46	2,5-4,0	4,0	6-11	6	-	•	•	•	•	-
NT4RCK	4	0,34	3,23	2,5-5,5	4,0-5,5	4,5-11	4.5-6	-	-	•	•	•	-
левое исполнен	ние										İ	İ	
NT3LCK	3	0,34	2,46	2,5-4,0	4,0	6-11	6	-	•	•	•	•	-
NT4LCK	4	0,34	3,23	2,5-5,5	4,0-5,5	4,5-11	4.5-6	_	-	•	-	•	-
											-	_	\neg

Метрическая наружная резьба по ISO


NTC-M-E

номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KC110	KCU25	KC5010	KC5025	KC5410
правое исполн	ение												
NTC3MR150E	3	0,20	3,68	1,50	_	_	_	-	•	- -	•	•	-
NTC3MR200E	3	0,27	3,68	2,00	_	_	_	-	-	-	•	-	-

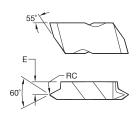
• лучший выбор

о альтернативный выбор

Р		•	•	•	•	
М		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
s	•	•	•	•	•	С
Н		0		0		

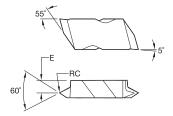
NTC-E

	номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	KC5010	KC5025	KC5410
	равое исполн	ение			1									
	NTC3R32E	3	0,10	3,76	_	_	32	_	-	•	-	- (•	-
	NTC3R28E	3	0,12	3,76	–	_	28	_	-	-	-	-	•	-
	NTC3R24E	3	0,13	3,76	_	_	24	_	-	-	-	•	•	-
	NTC3R20E	3	0,16	3,76	_	_	20	_	-	•	-	•	•	-
	NTC3R18E	3	0,18	3,76	_	_	18	_	_	-	•	•	•	_
	NTC3R16E	3	0,19	3,76	_	_	16	_	-	-	-	•	•	-
	NTC3R14E	3	0,22	3,76	_	_	14	_	_	-	-	•	•	-
	NTC3R13E	3	0,24	3,76	_	_	13	_	-	-	-	•	•	-
	NTC3R12E	3	0,25	3,76	_	_	12	_	-	-	•	•	•	-
	NTC3R11E	3	0,28	2,72	_	_	11	_	-	•	_	- 4	•	-
	NTC3R10E	3	0,32	2,72	_	_	10	_	_	-	_	•	•	-
	NTC3R9E	3	0,36	2,72	_	_	9	_	-	•	-	_	-	-
	NTC3R8E	3	0,41	2,72	_	_	8	_	-	•	-	•	•	-
	NTC3R7E	3	0,47	2,72	_	_	7	_	-	-	-	- 1	•	-
Л	евое исполне	ние												
	NTC3L16E	3	0,19	3,76	_	_	16	_	-	•	-	-	-	-
	NTC3L12E	3	0,25	3,76	_	_	12	_	-	•	-	-	-	-
	NTC3L10E	3	0,32	2,72	_	_	10	_	-	•	-		-	-
	NTC3L8E	3	0,41	2,72	_	_	8	_	-	-	-	•	-	-



лучший выбор○ альтернативный выбор

Р		•	•	•	•	
М		•	•	•	•	
K	0	•	•	•	•	
N	•	•	0	0	0	•
S	•	•	•	•	•	0
Н		0		0		


NTF

номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	201	KC5025	541
правое исполнение													
NTF2R	2	0,08	2,79	0,60-1,75	1,0-2,0	14-44	12-24	•	•	•	•	•	-
NTF3R	3	0,08	3,58	0,60-2,5	1,0-2,5	10-44	9-24	•	•	•	•	•	-
NTF4R	4	0,08	5,11	0,60-2,5	1,0-2,5	10-44	9-24	_	-	-	-	•	_
левое исполнение										П			
NTF2L	2	0,08	2,79	0,60-1,75	1,0-2,0	14-44	12-24	•	•	•	•	•	-
NTF3L	3	0,08	3,58	0,60-2,5	1,0-2,5	10-44	9-24	•	•	•	•	•	-

Неполный профиль с углом 60°

NTK

_	номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм		шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	88	KCU10	KCU25	וה	KC5025	ای
п	оавое исполнение													
	NTK2R	2	0,08	2,79	0,60-1,75	1,0-2,0	14-44	12-24	•	•	•	•	•	-
	NTK3R	3	0,08	3,58	0,60-2,50	1,0-2,5	10-44	9-24	•	•	•	•	•	-
ле	вое исполнение												ĺ	
	NTK2L	2	0,08	2,79	0,60-1,75	1,0-2,0	14-44	12-24	•	•	•	•	•	-
	NTK3L	3	0,08	3,58	0,60-2,50	1,0-2,5	10-44	9-24	•	•	•	•	•	-

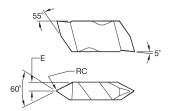
Неполный профиль с углом 60°

E RC

• лучший выбор

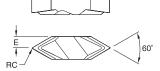
○ альтернативный выбор

Р		•	•	•	•	
М		•	•	•	•	
K	0	•	•	•	•	Γ
N	•	•	0	0	0	
S	•	•	•	•	•	(
Н		0		0		Γ


NT-ł	4
------	---

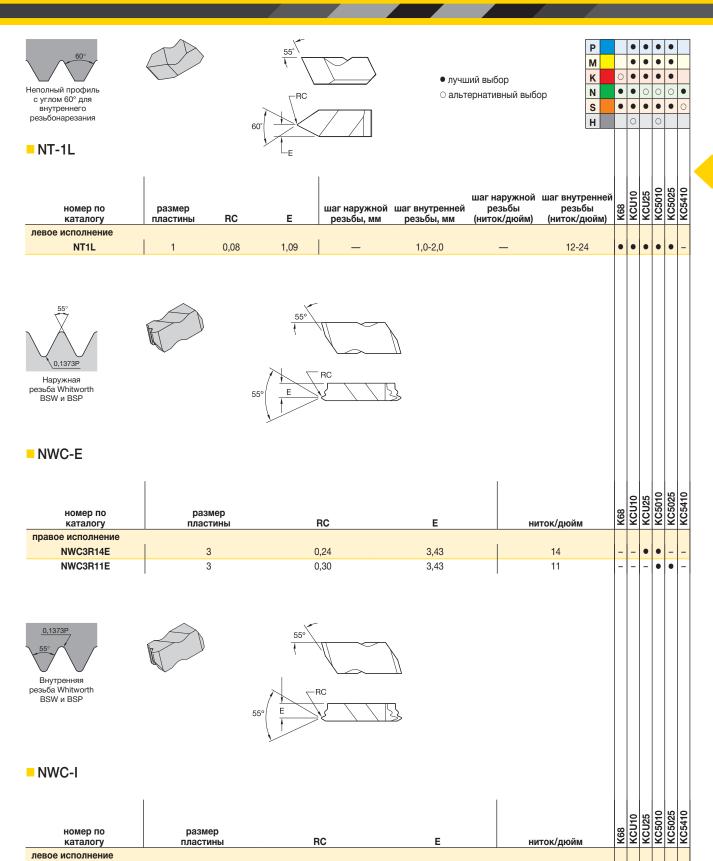
номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KCU25	KC5010	KC5025	KC5410
правое исполнени	ie												
NT2RK	2	0,10	1,90	0,70-3,0	1,25-3,5	8-36	7-20	-	•	•	•	•	-
NT3RK	3	0,17	2,49	1,25-4,0	2,0-5,0	6-20	5-12	-	•	•	•	•	-
NT4RK	4	0,16	3,24	1,25-6,25	2,0-6,25	4-20	4-12	-	•	•	•	•	-
левое исполнение													
NT2LK	2	0,10	1,90	0,70-3,0	1,25-3,5	8-36	7-20	-	•	•	•	•	-
NT3LK	3	0,17	2,49	1,25-4,0	2,0-5,0	6-20	5-12	-	•	•	•	•	-
NT4LK	4	0,16	3,24	1,25-6,25	2,0-6,25	4-20	4-12	-	•	•	•	•	-
·			,										

Неполный профиль с углом 60°


NTP

номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)		KCU10	KCU25	Ó.	KC5025	5
правое исполнени	1e												
NTP2R	2	0,10	1,91	0,70-3,0	1,25-3,5	8-36	7-20	•	•	•	•	•	-
NTP3R	3	0,17	2,49	1,25-4,0	2,0-5,0	6-20	5-12	•	•	•	•	•	•
NTP4R	4	0,17	3,25	1,25-6,25	2,0-6,25	4-20	4-12	-	•	•	•	•	-
левое исполнение	•												
NTP2L	2	0,10	1,91	0,70-3,0	1,25-3,5	8-36	7-20	•	•	$ \bullet $	•	•	-
NTP3L	3	0,17	2,49	1,25-4,0	2,0-5,0	6-20	5-12	•	•	•	•	•	-
NTP4L	4	0,17	3,25	1,25-6,25	2,0-6,25	4-20	4-12	-	-	-	•	•	-

Неполный профиль с углом 60° для наружного резьбонарезания

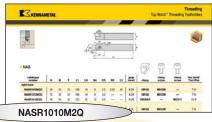


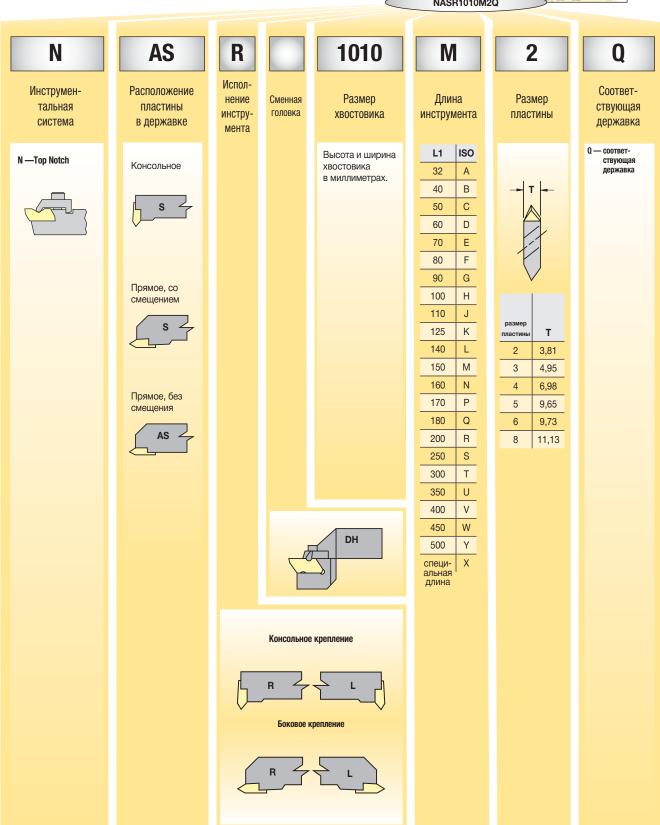
NTU

номер по каталогу	размер пластины	RC	E	шаг наружной резьбы, мм	шаг внутренней резьбы, мм	шаг наружной резьбы (ниток/дюйм)	шаг внутренней резьбы (ниток/дюйм)	K68	KCU10	KC5010	KC5025	KC5410
правое исполнени	1 е											
NTU4R	4U	0,11	3,18	1,25-6,25	_	4-20	_	-	- 0	-	•	_

3

0,30


3,43


NWC3L11I

Как расшифровать обозначение по каталогу?

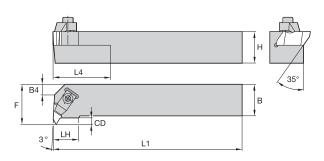
Каждый символ в обозначении по каталогу отражает характерные особенности данного изделия. Ниже приведена расшифровка обозначений.



NAS

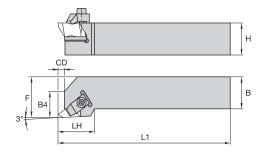
		ı									1				
номер заказа	номер по каталогу	н	В	F	L1	LH	В4	CD	В3	L3	эталонная пластина	прижим	винт клина	винт клина	шестиг- ранник (мм)/ Torx Plus
правое исп	олнение														
1098788	NASR1010M2Q	10	10	10	150	19	9	3,5	2,03	19	N.2R	CM182	MS1200	_	T10
1098789	NASR1212M2Q	12	12	12	150	19	9	3,5	_	_	N.2R	CM182	MS1200	_	T10
1098786	NASR1616K3Q	16	16	16	125	32	13	5,3	_	_	N.3R	CM184LP	_	MS2111	25 IP
левое испо.	лнение														
1098859	NASL1010M2Q	10	10	10	150	19	9	3,5	2,03	19	N.2L	CM183	MS1200	_	T10
1098860	NASL1212M2Q	12	12	12	150	19	9	6,9	_	_	N.2L	CM183	MS1200	_	T10
1098857	NASL1616K3Q	16	16	16	125	32	13	5,3	_	_	N.3L	CM185LP	_	MS2111	25 IP

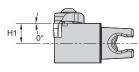
ПРИМЕЧАНИЕ. Размер F измеряется по острой вершине пластины N для резьбонарезания.

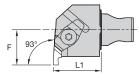


NE

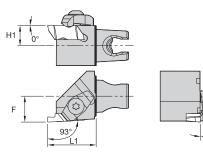
номер заказа	номер по каталогу	н	В	F	L1	LH	CD	L4	эталонная пластина	прижим	винт клина	винт клина	шестиг- ранник (мм)/ Torx Plus
правое испо	олнение												
1098803	NER1616H2	16	16	20	100	15	3,5	_	N.2L	CM75	MS1200	_	T10
1098804	NER2020K2	20	20	25	125	15	3,5	_	N.2L	CM75	MS1200	_	T10
1098805	NER2525M2	25	25	32	150	15	3,5	25,4	N.2L	CM75	MS1200	_	T10
1098806	NER2525M3	25	25	32	150	22	5,3	50,8	N.3L	CM73LP	_	MS2111	25 IP
1098808	NER2525M4	25	25	35	150	24	6,4	50,8	N.4L	CM73LP	_	MS2111	25 IP
1098807	NER3225P3	32	25	32	170	22	3,8	50,8	N.3L	CM73LP	_	MS2111	25 IP
1098809	NER3225P4	32	25	35	170	24	6,4	50,8	N.4L	CM73LP	_	MS2111	25 IP
1098810	NER3232P4	32	32	40	170	24	6,4	50,8	N.4L	CM73LP	_	MS2111	25 IP
левое испол	пнение												
1098874	NEL1616H2	16	16	20	100	15	3,5	_	N.2R	CM74	MS1200	_	T10
1098875	NEL2020K2	20	20	25	125	15	3,5	_	N.2R	CM74	MS1200	_	T10
1098876	NEL2525M2	25	25	32	150	15	3,5	25,4	N.2R	CM74	MS1200	_	T10
1098877	NEL2525M3	25	25	32	150	22	5,3	50,8	N.3R	CM72LP	_	MS2111	25 IP
1098879	NEL2525M4	25	25	35	150	24	6,4	50,8	N.4R	CM72LP	_	MS2111	25 IP
1098878	NEL3225P3	32	25	32	170	22	3,8	50,8	N.3R	CM72LP	_	MS2111	25 IP
1098880	NEL3225P4	32	25	35	170	24	6,4	50,8	N.4R	CM72LP	_	MS2111	25 IP
1098881	NEL3232P4	32	32	40	170	24	6,4	50,8	N.4R	CM72LP	_	MS2111	25 IP


ПРИМЕЧАНИЕ. Размер F измеряется по острой вершине пластины Top Notch для резьбонарезания.


NS


номер заказа	номер по каталогу	н	В	F	L1	LH	В4	CD	эталонная пластина	прижим	винт клина	винт клина	шестиг- ранник (мм)/ Torx Plus
правое исг	толнение												
1098790	NSR1010E2	10	10	14	70	19	9	3,5	N.2R	CM74	MS1200	_	T10
1098791	NSR1212F2	12	12	16	80	19	9	3,5	N.2R	CM74	MS1200	_	T10
1098792	NSR1616H2	16	16	20	100	19	9	3,5	N.2R	CM74	MS1200	_	T10
1098793	NSR2020K2	20	20	25	125	19	9	3,5	N.2R	CM74	MS1200	_	T10
1098795	NSR2020K3	20	20	25	125	32	13	5,3	N.3R	CM72LP	_	MS2111	25 IP
1098794	NSR2525M2	25	25	32	150	19	9	3,5	N.2R	CM74	MS1200	_	T10
1098796	NSR2525M3	25	25	32	150	32	13	5,3	N.3R	CM72LP	_	MS2111	25 IP
1098799	NSR2525M4	25	25	32	150	35	14	7,5	N.4R	CM72LP	_	MS2111	25 IP
1098797	NSR3225P3	32	25	32	170	32	13	5,3	N.3R	CM72LP	_	MS2111	25 IP
1098800	NSR3225P4	32	25	32	170	35	14	7,5	N.4R	CM72LP	_	MS2111	25 IP
1098798	NSR3232P3	32	32	40	170	32	13	5,3	N.3R	CM72LP	_	MS2111	25 IP
1098801	NSR3232P4	32	32	40	170	35	14	7,5	N.4R	CM72LP	_	MS2111	25 IP
левое испо	олнение												
1098861	NSL1010E2	10	10	14	70	19	9	3,5	N.2L	CM75	MS1200	_	T10
1098862	NSL1212F2	12	12	16	80	19	9	3,5	N.2L	CM75	MS1200	_	T10
1098863	NSL1616H2	16	16	20	100	19	9	3,5	N.2L	CM75	MS1200	_	T10
1098864	NSL2020K2	20	20	25	125	19	9	3,5	N.2L	CM75	MS1200	_	T10
1098866	NSL2020K3	20	20	25	125	32	13	5,3	N.3L	CM73LP	_	MS2111	25 IP
1098865	NSL2525M2	25	25	32	150	19	9	3,5	N.2L	CM75	MS1200	_	T10
1098867	NSL2525M3	25	25	32	150	32	13	5,3	N.3L	CM73LP	_	MS2111	25 IP
1098870	NSL2525M4	25	25	32	150	35	14	7,5	N.4L	CM73LP	_	MS2111	25 IP
1098868	NSL3225P3	32	25	32	170	32	13	5,3	N.3L	CM73LP	_	MS2111	25 IP
1098871	NSL3225P4	32	25	32	170	35	14	7,5	N.4L	CM73LP	_	MS2111	25 IP
1098869	NSL3232P3	32	32	40	170	32	13	5,3	N.3L	CM73LP	_	MS2111	25 IP
1098872	NSL3232P4	32	32	40	170	35	14	7,5	N.4L	CM73LP	_	MS2111	25 IP

ПРИМЕЧАНИЕ. Размер F измеряется по острой вершине пластины Top Notch для резьбонарезания и обработки канавок.

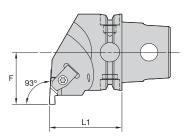


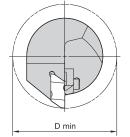
■ NE 93°

		ı						
номер заказа	номер по каталогу	L1	F	H1	эталонная пластина	прижим	винт клина	винт клина
правое исполнение								
2399462	KM25NER230	30	22	12,5	NG2L	CM75	_	MS1200
2399494	KM25NER330	30	22	12,5	NG3L	CM73LP	MS2111	_
2399496	KM25NER430	30	24	12,5	NG4L	CM73LP	MS2111	_
левое исполнение								
2399495	KM25NEL330	30	22	12,5	NG3R	CM72LP	MS2111	_
2300407	KM25NFI 430	30	24	12.5	NG4R	CM72LP	MC2111	_

NS 93°

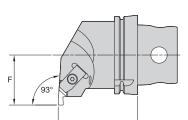
		ı			ı			
номер заказа	номер по каталогу	L1	F	H1	эталонная пластина	прижим	винт клина	винт клина
правое исполнение 2399498	KM25NSR230	30	16	12,5	NG2R	CM74	_	MS1200
2399500	KM25NSR330	30	16	12,5	NG3R	CM72LP	MS2111	—
левое исполнение	KM25NSL230	30	16	12,5	NG2L	CM75		MS1200
2399499 2399501	KM25NSL330	30	16	12,5	NG3L	CM73LP	— MS2111	- WIS 1200
2399503	KM25NSL430	30	16	12,5	NG4L	CM213LP	MS2111	_

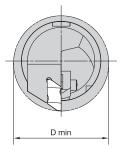




■ NE 93°

номер	номер по	L1		F		D min		эталонная		винт		
заказа	каталогу	ММ	дюйм	ММ	дюйм	мм	дюйм	пластина	прижим	клина	ΚΓ	фунт
правое исполнен	ние											
3902285	KM40TSNER2	40	1.575	27	1.063	54	2.126	NG2L	CM75	MS1488	0,30	.66
3902286	KM40TSNER3	40	1.575	27	1.063	54	2.126	NG3L	CM73	MS1489	0,30	.67
3902287	KM40TSNER4	40	1.575	27	1.063	54	2.126	NG4L	CM73	MS1489	0,30	.65
левое исполнени	ие											
3902132	KM40TSNEL2	40	1.575	27	1.063	54	2.126	NG2R	CM74	MS1488	0,30	.66
3902283	KM40TSNEL3	40	1.575	27	1.063	54	2.126	NG3R	CM-72	MS1489	0,30	.67
3902284	KM40TSNEL4	40	1.575	27	1.063	54	2.126	NG4R	CM-72	MS1489	0,30	.65

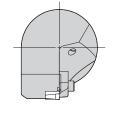




NE

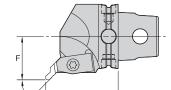
Резьбонарезание

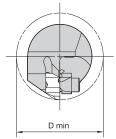
		I						1 1				
		L1		F		D min						
номер	номер по							эталонная		винт		
заказа	каталогу	MM	дюйм	MM	дюйм	MM	дюйм	пластина	прижим	клина	ΚГ	фунт
правое исполнение												
5337758	KM4X100NER3	100	3.937	63	2.480	120	4.724	NG3L	CM73	MS1489	4,45	9.80
5337759	KM4X100NER4	100	3.937	63	2.480	120	4.724	NG4L	CM73	MS1489	4,51	9.93
5337770	KM4X100NER5	100	3.937	63	2.480	120	4.724	NG5L	CM81	MS1490	4,65	10.25
5337771	KM4X100NER6	100	3.937	63	2.480	120	4.724	NG6L	CM121	MS1489	4,48	9.88
левое исполнение												
5337754	KM4X100NEL3	100	3.937	63	2.480	120	4.724	NG3R	CM-72	MS1489	4,45	9.80
5337755	KM4X100NEL4	100	3.937	63	2.480	120	4.724	NG4R	CM-72	MS1489	4,51	9.93
5337756	KM4X100NEL5	100	3.937	63	2.480	120	4.724	NG5R	CM80	MS1490	4,65	10.25
5337757	KM4X100NEL6	100	3.937	63	2.480	120	4.724	NG6R	CM120	MS1489	4,48	9.88



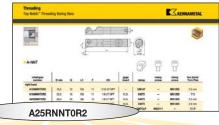
■ NS 93°

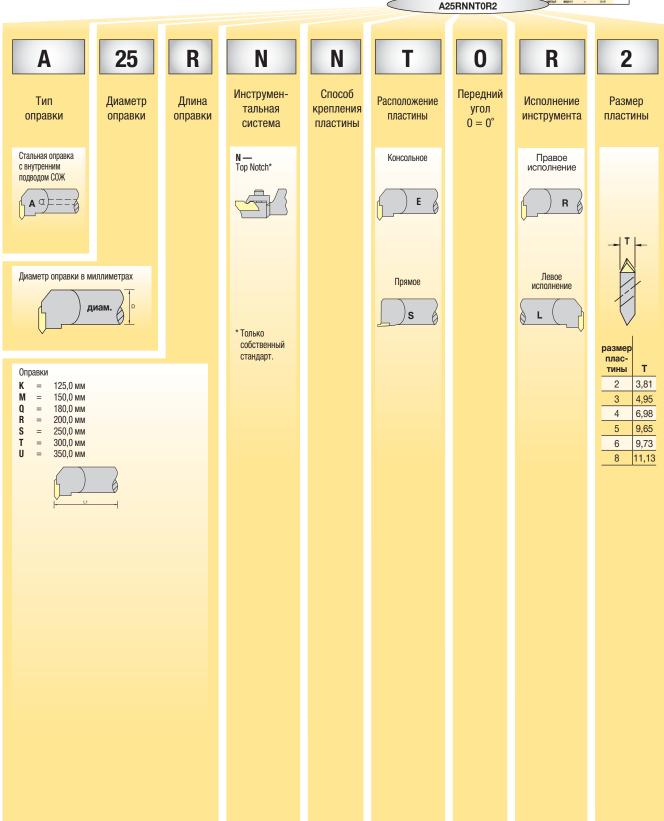
			L1		F					
номер	номер по		~			эталонная		винт		4
заказа	каталогу	ММ	дюйм	MM	дюйм	пластина	прижим	клина	КГ	фунт
правое исполнение	•									
3902293	KM40TSNSR2	40	1.575	27	1.063	NG2R	CM74	MS1488	0,32	.70
3902294	KM40TSNSR3	47	1.850	27	1.063	NG3R	CM-72	MS1489	0,32	.71
3902295	KM40TSNSR4	47	1.850	27	1.063	NG4R	CM-72	MS1489	0,30	.66
левое исполнение										
3902290	KM40TSNSL2	40	1.575	27	1.063	NG2L	CM75	MS1488	0,32	.70
3902291	KM40TSNSL3	47	1.850	27	1.063	NG3L	CM73	MS1489	0,33	.72
3902292	KM40TSNSL4	47	1.850	27	1.063	NG4L	CM73	MS1489	0,30	.66





NR 45°




номер	номер по		L1		F	D	min	эталонная		винт		
заказа	каталогу	ММ	дюйм	ММ	дюйм	MM	дюйм	пластина	прижим	клина	ΚГ	фунт
правое исполне	ение											
3902289	KM40TSNRR3045M	45	1.772	27	1.063	54	2.126	NU3L	CM73	MS1489	0,34	.75
левое исполне	ние											
3902288	KM40TSNRL3045M	45	1.772	27	1.063	54	2.126	NU3R	CM-72	MS1489	0,33	.74

Как расшифровать обозначение по каталогу?

Каждый символ в обозначении по каталогу отражает характерные особенности данного изделия. Ниже приведена расшифровка обозначений.

Контурная обработка с инструментом Beyond™ Top Notch™

Инструменты Top Notch — проверенное решение для достижения высокой производительности. Система Top Notch обеспечивает стабильную производительность инструмента, точную смену и надежное крепление пластин для гарантии высокого качества обработанной поверхности и прогнозируемой стойкости инструмента.

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА

Более высокая производительность и рентабельность

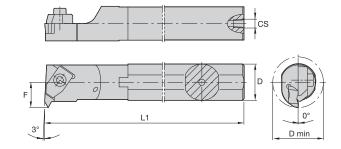
- Низкие усилия резания позволяют увеличить скорость и сократить продолжительность рабочего цикла.
- Увеличенная стойкость инструмента.

Надежность

- Равномерный износ и предсказуемая стойкость инструмента.
- Минимальный риск повреждения поверхности сходящей стружкой.
- Стабильно высокое качество обработанной поверхности.

Универсальность

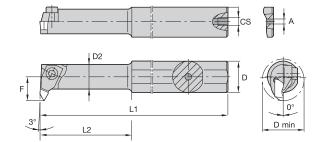
- Инструменты подходят для широкого спектра операций.
- Используются для низко- и высокоскоростной обработки.
- Полный ассортимент продукции.
- Чистовое и черновое точение стали, чугуна, нержавеющей стали и жаропрочных сплавов


Подробнее о результатах применения и преимуществах использования данного инструмента вы можете узнать у своего авторизованного дистрибьютора Kennametal или на сайте **kennametal.com.**

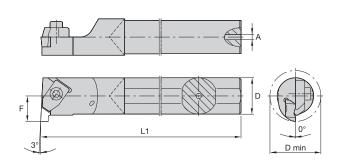
Стальная оправка с внутренним подводом СОЖ

A-NNT

номер заказа	номер по каталогу	D min	D	L1	F	cs	эталонная пластина	прижим	винт клина	винт клина	шестигранник (мм)/ Torx Plus
правое испол	пнение										
1098945	A12MNNTOR2	18,5	12	150	11	1/16-27 NPT	_	CM147	_	MS1200	2.5 mm
1098947	A16MNNTOR2	22,0	16	150	11	1/8-27 NPT	N.2L	CM75	_	MS1200	T10
1098949	A20QNNTOR2	26,0	20	180	13	1/8-27 NPT	N.2L	CM75	_	MS1200	2.5 mm
1098951	A25RNNTOR2	34,0	25	200	17	1/4-18 NPT	N.2L	CM75	_	MS1200	2.5 mm
1098953	A25RNNTOR3	34,0	25	200	17	1/8 - 27 NPT	N.3L	CM73LP	MS2111	_	25 IP
1098955	A32SNNTOR3	44,0	32	250	22	1/4-18 NPT	N.3L	CM73LP	MS2111	_	25 IP
1098957	A40TNNTOR3	54,0	40	300	27	1/4-18 NPT	N.3L	CM73LP	MS2111	_	25 IP
1099001	A40TNNTOR4	54,0	40	300	27	1/4-18 NPT	N.4L	CM73LP	MS2111	_	25 IP
1099003	A50UNNTOR4	70,0	50	350	35	1/4-18 NPT	N.4L	CM73LP	MS2111	_	25 IP
левое исполн	нение										
1098946	A12MNNTOL2	18,5	12	150	11	1/16-27 NPT	NG2R	CM146	_	MS1200	2.5 mm
1098948	A16MNNTOL2	22,0	16	150	11	1/8-27 NPT	N.2R	CM74	_	MS1200	T10
1098950	A20QNNTOL2	26,0	20	180	13	1/8-27 NPT	NG2R	CM74	_	MS1200	2.5 mm
1098952	A25RNNTOL2	34,0	25	200	17	1/4-18 NPT	N.2R	CM74	_	MS1200	2.5 mm
1098954	A25RNNTOL3	34,0	25	200	17	1/4-18 NPT	N.3R	CM72LP	MS2111	_	25 IP
1098956	A32SNNTOL3	44,0	32	250	22	1/4-18 NPT	N.3R	CM72LP	MS2111	_	25 IP
1098958	A40TNNTOL3	54,0	40	300	27	1/4-18 NPT	N.3R	CM72LP	MS2111	_	25 IP
1099002	A40TNNTOL4	54,0	40	300	27	1/4-18 NPT	N.4R	CM72LP	MS2111	_	25 IP


ПРИМЕЧАНИЕ. Минимально возможный диаметр отверстия (D min) зависит от типа и шага резьбы. Дополнительные сведения см. на стр. D102. Размер F измеряется по острой вершине пластины NG для обработки канавок.

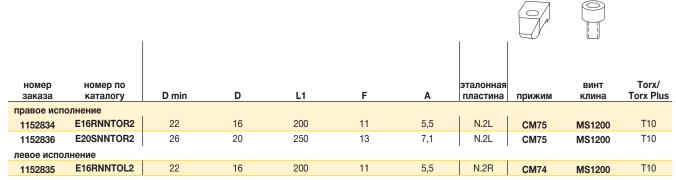
Стальная оправка с уменьшением по диаметру и внутренним подводом СОЖ


- A-NNT -1

		ı											
номер заказа	номер по каталогу	D min	D	HDD	L1	L2	F	A	cs	эталонная пластина	прижим	винт клина	шести- гранник
правое исп	олнение												
1098943	A10KNNTOR1	11,5	10	10,0	125	_	7	3,2	_	NG1L	CM109	MS1034	1.5 mm
1098944	A12MNNTOR1	11,5	12	10,0	150	31,30	7	4,0	1/16-27 NPT	N.1L	CM109	MS1034	1.5 mm

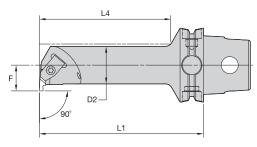
ПРИМЕЧАНИЕ. Размер F измеряется по острой вершине пластины Top Notch для резьбонарезания.

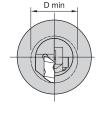
Твердосплавная оправка с внутренним подводом СОЖ



E-NNT

ПРИМЕЧАНИЕ. Минимально возможный диаметр отверстия (D min) зависит от типа и шага резьбы. Дополнительные сведения см. на стр. D102. Размер F измеряется по острой вершине пластины Тор Notch для резьбонарезания.





■ NE 90° • Сталь

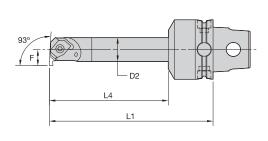
			D2	D	min		F		L4		L1			
номер заказа	номер по каталогу	мм	дюйм	мм	дюйм	мм	дюйм	мм	дюйм	мм	дюйм	эталонная пластина	кг	фунт
правое исполн	ение													
3955481	KM40TSS12ENER2	12	.472	19	.73	11	.433	42	1.655	70	2.756	NG2L	0,27	.58
3955483	KM40TSS16FNER2	16	.630	20	.79	11	.433	56	2.209	80	3.150	NG2L	0,28	.62
3955485	KM40TSS20GNER2	20	.787	25	.98	13	.512	70	2.757	90	3.543	NG2L	0,35	.76
3955487	KM40TSS25ENER2	25	.984	32	1.26	17	.669	55	2.169	70	2.756	NG2L	0,34	.75
3955491	KM40TSS25ENER3	25	.984	34	1.34	17	.669	55	2.169	70	2.756	NG3L	0,35	.77
3955489	KM40TSS25HNER2	25	.984	32	1.26	17	.669	75	2.954	100	3.937	NG2L	0,49	1.08
3955493	KM40TSS25HNER3	25	.984	34	1.34	17	.669	75	2.954	100	3.937	NG3L	0,49	1.09
3955497	KM40TSS32GNER3	32	1.260	40	1.57	22	.866	76	2.993	90	3.543	NG3L	0,55	1.21
3955495	KM40TSS32JNER3	32	1.260	40	1.57	22	.866	96	3.780	110	4.331	NG3L	0,67	1.48
левое исполне	ние													
3955480	KM40TSS12ENEL2	12	.472	19	.73	11	.433	42	1.655	70	2.756	NG2R	0,27	.59
3955482	KM40TSS16FNEL2	16	.630	20	.79	11	.433	56	2.209	80	3.150	NG2R	0,28	.62
3955484	KM40TSS20GNEL2	20	.787	25	.98	13	.512	70	2.757	90	3.543	NG2R	0,35	.76
3955486	KM40TSS25ENEL2	25	.984	32	1.26	17	.669	55	2.169	70	2.756	NG2R	0,34	.75
3955490	KM40TSS25ENEL3	25	.984	34	1.34	17	.669	55	2.169	70	2.756	NG3R	0,35	.77
3955492	KM40TSS25HNEL3	25	.984	34	1.34	17	.669	75	2.954	100	3.937	NG3R	0,49	1.09
3955496	KM40TSS32GNEL3	32	1.260	40	1.57	22	.866	76	2.993	90	3.543	NG3R	0,55	1.21

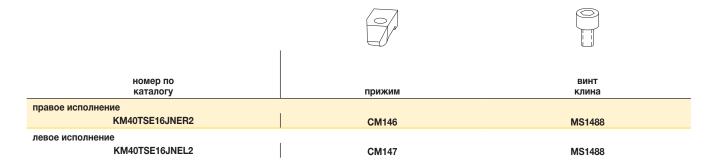
(продолжение)

(NE 90° • Сталь — продолжение)

Комплектующие

номер по		винт
каталогу	прижим	клина
правое исполнение		
KM40TSS12ENER2	CM147	MS1488
KM40TSS16FNER2	CM147	MS1488
KM40TSS20GNER2	CM75	MS1488
KM40TSS25ENER2	CM75	MS1488
KM40TSS25ENER3	CM73	MS1489
KM40TSS25HNER2	CM75	MS1488
KM40TSS25HNER3	CM73	MS1489
KM40TSS32GNER3	CM73	MS1489
KM40TSS32JNER3	CM73	MS1489
левое исполнение		
KM40TSS12ENEL2	CM146	MS1488
KM40TSS16FNEL2	CM146	MS1488
KM40TSS20GNEL2	CM74	MS1488
KM40TSS25ENEL2	CM74	MS1488
KM40TSS25ENEL3	CM-72	MS1489
KM40TSS25HNEL3	CM-72	MS1489
KM40TSS32GNEL3	CM-72	MS1489

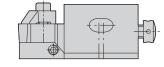


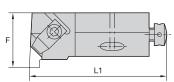


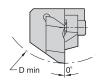
■ NE 90° • Твердый сплав

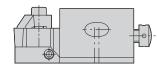
номер	номер по		D2	D	min		F		L4		L1	эталонная		
заказа	каталогу	ММ	дюйм	ММ	дюйм	ММ	дюйм	ММ	дюйм	ММ	дюйм	пластина	ΚΓ	фунт
правое исполне	ние													
3951836	KM40TSE16JNER2	16	.630	20	.79	11	.433	80	3.15	110	4.331	NG2L	0,41	.90
левое исполнен 3951835	ие KM40TSE16JNEL2	16	.630	20	.79	11	.433	80	3.15	110	4.331	NG2R	0,41	.90

Комплектующие





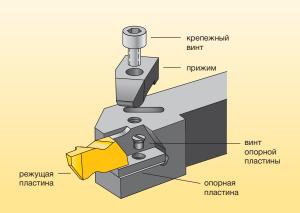




Сталь	ьные расто	чные к	картр	иджи	I I								
номер заказа	номер по каталогу	D min	F	L1	эталонная пластина	прижим	винт клина	шести- гранник	радиальный регули- ровочный винт	шести- гранник	осевой винт	шести- гранник	шайба
правое и	сполнение												
1098380	NER12CA2	50	20	55,7	N.2L	CM75	MS1025	2.5 mm	KUAM23	2.5 mm	KUAM31	2.5 mm	CSWM 060 050
левое ис	полнение												
1098624	NEL12CA2	50	20	55,0	N.2R	CM74	MS1025	2.5 mm	KUAM23	2.5 mm	KUAM31	2.5 mm	CSWM 060 050
1098626	NEL25CA3	100	32	100,0	N.3R	CM72LP	MS412	4 mm	KUAM26	4 mm	KUAM33	4 mm	CSWM 100 080

ПРИМЕЧАНИЕ. Минимально возможный диаметр отверстия (D min) зависит от типа и шага резьбы. Дополнительные сведения см. на стр. D102. Размер F измеряется по острой вершине пластины Top Notch для резьбонарезания.





						радиальный регули-							
номер	номер по				эталонная		винт	шести-	ровочный	шести-	осевой	шести-	
заказа	каталогу	D min	F	L1	пластина	прижим	клина	гранник	винт	гранник	винт	гранник	шайба
правое исг	олнение												
1098380	NER12CA2	50	20	55,7	N.2L	CM75	MS1025	2.5 mm	KUAM23	2.5 mm	KUAM31	2.5 mm	CSWM 060 050
левое испо	лнение												
1098624	NEL12CA2	50	20	55,0	N.2R	CM74	MS1025	2.5 mm	KUAM23	2.5 mm	KUAM31	2.5 mm	CSWM 060 050
1098626	NEL25CA3	100	32	100,0	N.3R	CM72LP	MS412	4 mm	KUAM26	4 mm	KUAM33	4 mm	CSWM 100 080

ПРИМЕЧАНИЕ. Минимально возможный диаметр отверстия (D min) зависит от типа и шага резьбы. Дополнительные сведения см. на стр. D102. Размер F измеряется по острой вершине пластины Тор Notch для резьбонарезания.

Державки и расточные оправки

		ı			T 1
размер и тип	пластины	прижим	крепежный винт	опорная пластина	винт опорной пластины
NG-1L		CM-109	S-304	-	-
NG-2R		CM-182	S-310	-	-
NG-2L		CM-183	S-310	-	-
NG-2R		CM-74	S-310	-	-
NG-2L		CM-75	S-310	-	-
NG-3R		CM-184	S-412	-	-
NG-3L		CM-185	S-412	-	-
NG-3R		CM-72	S-412	-	-
NG-3L		CM-73	S-412	-	-
NG-3R*		CM-78	S-412	-	-
NG-3L*		CM-70	S-412	-	-
NG-4R		CM-72	S-412	SM-420	SL-344
NG-4L		CM-73	S-412	SM-420	SL-344
NG-5R		CM-80	S-352	-	-
NG-5L		CM-81	S-352	-	-
NG-6R		CM-120	S-412	SM-416	S-111
NG-6L		CM-121	S-412	SM-416	S-111
NG-8R		CM-144	S-422	SM-419	S-112
NG-8L		CM-145	S-422	SM-419	S-112
NG-8R**		CM-144	S-422	SM-427	S-111
NG-8L**		CM-145	S-422	SM-427	S-111
Пластины Top Notch для	я обработки профилы	ных канавок			
NU-3125R		CM-72	S-412	-	-
NU-3125L		CM-73	S-412	-	-
NU-3125R**		CM-72	S-618	-	-
NU-3125L**		CM-73	S-618	-	-

^{*} Расточная оправка диаметром 25 мм. ** Расточная головка.

LT • Треугольные пластины Laydown для резьбонарезания

Основная область применения

Треугольные пластины (LT) Laydown для резьбонарезания идеально подходят для нарезания резьбы с мелким шагом, с большим углом наклона винтовой линии или многозаходных резьб, а также для нарезания резьбы однолезвийным инструментом в отверстиях малого диаметра. Широкий выбор пластин со стружколомом СВ-типа обеспечивает превосходный стружкоотвод и высочайшее качество обработанной поверхности при минимальном вмешательстве оператора. Небольшая высота профиля обеспечивает свободное удаление стружки, что идеально подходит для нарезания внутренней резьбы. Опорные пластины с различными углами и соответствующей режущей геометрией позволяют нарезать правую и левую резьбу. Это обеспечивает максимальную стойкость инструмента и улучшает качество получаемой резьбы.

Особенности и преимущества

Прецизионно шлифованные пластины LT и LT-CB для создания резьб различного профиля

- Минимизируют нарост на кромках.
- Повышают точность резания при обработке большинства групп материалов.
- Снижают силы резания.
- Обеспечивают получение точной высококачественной резьбы.

Превосходное стружкодробление

- Отсутствие проблем с длинной витой стружкой.
- Отличное решение для внутреннего резьбонарезания.
- В наличии имеются пластины с неполным и полным профилем для нарезания всех стандартных резьб.

Высококлассные сплавы КС5010[™] и КС5025[™] с покрытием из TiAIN, нанесенным методом PVD

- Увеличенный срок службы инструмента в существующих условиях обработки.
- Повышение производительности за счет увеличения скорости резания до 30%.

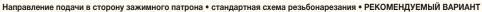
Пластины Kenna Universal™

- Прецизионно спрессованные пластины LT-К для нарезания различных форм резьбы обеспечивают непревзойденную универсальность и качество.
- Превосходный стружкоотвод в сочетании с новым сплавом KU25T™ обеспечивает надежное нарезание резьбы в широком диапазоне обрабатываемых материалов.

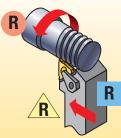
Шаг 1 • Выбор метода резьбонарезания и исполнения инструмента

Необходимые исходные данные:

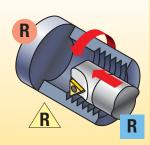
- Наружная/внутренняя обработка.
- Направление вращения шпинделя/исполнение резьбы.
- Направление подачи.



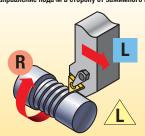
направление


исполнение державки

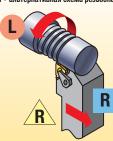
исполнение пластины



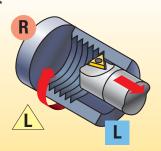
наружная правая резьба

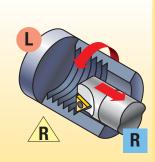


внутренняя левая резьба



внутренняя правая резьба


Направление подачи в сторону от зажимного патрона • альтернативная схема резьбонарезания*


наружная правая резьба

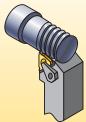
наружная левая резьба

внутренняя правая резьба

внутренняя левая резьба

Шаг 2 • Выбор державки из каталога

Необходимые исходные данные:


- Наружная/внутренняя обработка.
- Минимальный диаметр отверстия (для внутренней резьбы).
- Исполнение инструмента.
- Размер пластины (эталонная пластина).

Размер пластины должен соответствовать эталонной пластине выбранной державки:

номер по каталогу	эталонная пластина	минимальный диаметр отверстия	опорная пластина
S0812LSER2	2IRA60	16,5 мм	SM-YI3
S2020LSER3	3IR	36,8 мм	SM-YI3

Выберите соответствующую державку под размер пластины и ее исполнение:

Шаг 3 • Выбор пластины

- Выберите гребенчатые пластины для полностью контролируемой формы резьбы, включая диаметр.
- Благодаря использованию гребенчатых пластин исключается необходимость в снятии заусенцев. Эти пластины оптимальны для длительного срока эксплуатации инструмента при таком шаге.
- Пластины с неполным профилем без гребня обеспечивают универсальность при нарезании резьбы с различными шагами с использованием одной пластины.
- Запишите размер пластины для выбора державки.

ПРИМЕЧАНИЕ. Обзор пластин для резьбонарезания приведен на стр. D50.

KOA	размер пластины	номер по каталогу	KCU25/KC5025
	11	2IRA60	•
	16	3IRAG60	•

D46 kennametal.com

^{*} Требуется опорная пластина с задним углом

Шаг 4 • Выбор соответствующей опорной пластины

Необходимые исходные данные:

- Профиль резьбы (ТРІ (ниток на дюйм) или шаг).
- Средний диаметр.
- Метод нарезания (направление подачи, исполнение инструмента и резьбы).

Выберите соответствующую

опорную пластину: SMYE... для наружной правой или внутренней левой резьбы

SMYI... для внутренней правой или наружной левой резьбы

	П (- /	П б-/	20.00	tooll	older	2			shim orderin	g code (inch)			
	Правая резьба/правое	Левая резьба/левое	insert size	external	internal				standard				
	исполнение инструмента	исполнение инструмента	3 (3/8")	RH	LH	SM-YE3-3P	SM-YE3-2P	SM-YE3-1P	SM-YE3	SM-YE3-1N	SM-YE3-1.5N	SM-YE3-2N	SM-YE
	,,	''	3 (3/8")	LH	RH	SM-Y13-3P	SM-Y/3-2P	SM-YI3-1P	SM-Yt3	SM-Y13-1N	SM-Y13-1.5N	SM-Y13-2N	SM-YI
			4 (1/2")	RH	LH	SM-YE4-3P	SM-YE4-2P	SM-YE4-1P	SM-YE4	SM-YE4-1N	SM-YE4-1.5N	SM-YE4-2N	SM-YE
			4 (1/2")	LH	RH	SM-YI4-3P	SM-YI4-2P	SM-Y14-1P	SM-YH	SM-Y14-1N	SM-Y14-1.5N	SM-Y14-2N	SM-YI
				PI	pitch (mm)					neter (inch)			
	~~			2	-	-	-	-	0.12-0.31	0.32-0.84	>0.84	0.84-0.32	0.31-
				_	0,35	-	-	+	0.12-0.3	0.31-0.84	>0.84	0.84-0.31	0.3-
	The Common of th			4	0.40	-	-	*	0.14-0.35	0.36-0.95	>0.95	0.95-0.36	0.35
				6	0,40	-		-	0.14-0.35	0.36-0.96	>0.96	0.96-0.36 1.09-0.41	0.35
				-	0,45	-	-	0.11-0.16	0.17-0.44	0.41-1.09	>1.09	1.2-0.45	0.44
				8	0,00	-		0.12-0.17	0.18-0.46	0.47-1.27	>1.27	1.27-0.47	0.46
	(0)			4	-			0.12-0.17	0.2-0.51	0.52-1.38	>1.38	1.38-0.52	0.51
				_	0.60	-	0.1-0.12	0.13-0.19	0.21-0.53	0.54-1.44	>1.44	1.44-0.54	0.53
				0	- 0,00	-	0.11-0.12	0.14-0.21	0.22-0.56	0.57-1.52	>1.52	1.52-0.57	0.56
				-	0,70	-	0.12-0.15	0.16-0.23	0.24-0.62	0.63-1.68	>1.68	1.68-0.63	0.62
				6		-	0.12-0.15	0.16-0.23	0.24-0.62	0.63-1.69	>1.69	1.69-0.63	0.62
	_				0,75	0.11-0.12	0.13-0.16	0.17-0.25	0.26-0.66	0.67-1.8	>1.80	1.8-0.67	0.66
			- 1	2	-	0.12-0.13	0.14-0.17	0.18-0.26	0.27-0.7	0.71-1.9	>1.90	1.9-0.71	0.7-
				-	0,80	0.12-0.13	0.14-0.17	0.18-0.26	0.27-0.71	0.72-1.91	>1.91	1.91-0.72	0.71
	The	- Asset		8	-	0.14-0.14	0.15-0.19	0.2-0.3	0.31-0.8	0.81-2.17	>2.17	2.17-0.81	0.8-
			- 1	7		0.14-0.15	0.16-0.2	0.21-0.31	0.32-0.83	0.84-2.25	>2.25	2.25-0.84	0.83
					1,00	0.15-0.16	0.17-0.21	0.22-0.33	0.34-0.89	0.9-2.39	>2.39	2.39-0.9	0.89
				4		0.16-0.17	0.18-0.23	0.24-0.35	0.36-0.94	0.95-2.53	>2.53	2.53-0.95	0.94
	The state of the s				1,25	0.19-0.2	0.21-0.27	0.28-0.42	0.43-1.11	1.12-2.99	>2.99	2.99-1.12	1.11
				0	-	0.19-0.21	0.22-0.27	0.28-0.42	0.43-1.13	1.14-3.04	>3.04	3.04-1.14	1.13
				8	-	0.21-0.23	0.24-0.31	0.32-0.47	0.48-1.26	1.277-3.38	>3.38	3.38-1.27	1.26
					1,50	0.22-0.25	0.26-0.33	0.34-0.5	0.51-1.34	1.35-3.59	>3.59	3.59-1.35	1.34
				6	1,75	0.24-0.26	0.27-0.35	0.36-0.53	0.54-1.41	1.42-3.8	>3.80	3.8-1.42 4.19-1.57	1.41
				4	1,75	0.26-0.29	0.3-0.38	0.39-0.59	0.62-1.62	1.63-4.34	>4.19	4.19-1.57	1.62
				3	-	0.27-0.3	0.33-0.43	0.44-0.66	0.67-1.74	1.75-4.68	>4.68	4.68-1.75	1.62
		_			2.00	0.3-0.33	0.34-0.44	0.45-0.67	0.68-1.78	1.79-4.79	>4.00	4.79-1.79	1.78
				2	-	0.32-0.35	0.36-0.46	0.47-0.71	0.72-1.89	1.9-5.07	>5.07	5.07-1.9	1.89
			- 1		-	0.33-0.37	0.38-0.49	0.5-0.74	0.75-1.97	1.98-5.29	>5.29	5.29-1.98	1.97
			1		-	0.34-0.38	0.39-0.51	0.52-0.78	0.79-2.06	2.07-5.53	>5.53	5.53-2.07	2.06
					2,50	0.37-0.42	0.43-0.55	0.56-0.84	0.85-2.23	2.24-5.98	>5.98	5.98-2.24	2.23
			1	0	-	0.38-0.42	0.43-0.56	0.57-0.86	0.87-2.27	2.28-6.08	>6.08	6.08-2.28	2.27
				9	-	0.42-0.47	0.48-0.62	0.63-0.95	0.96-2.52	2.53-6.75	>6.75	6.75-2.53	2.52
				-	3,00	0.45-0.5	0.51-0.66	0.67-1.02	1.03-2.68	2.69-7.18	>7.18	7.18-2.69	2.68
				8	-	0.47-0.53	0.54-0.7	0.71-1.08	1.09-2.84	2.85-7.6	>7.60	7.6-2.85	2.84
					3,50	0.52-0.59	0.6-0.77	0.78-1.19	1.2-3.13	3.14-8.38	>8.38	8.38-3.14	3,1
		The state of the s		7	-	0.524-0.61	0.62-0.8	0.81-1.23	1.24-3.25	3.26-8.68	>8.68	8.68-3.26	3.25
	/ Ith				4,00	0.6-0.67	0.68-0.89	0.9-1.36	1.37-3.58	3.59-9.57	>9.57	9.57-3.59	3.58
				6	-	0.63-0.71	0.72-0.94	0.95-1.44	1.45-3.79	3.8-10.13	>10.13	10.13-3.8	3.79
١				-	5,00	0.75-0.84	0.85-1.11	1.12-1.7	1.71-4.48	4.49-11.97	>11.97	11.97-4.49	4,48
		THE STATE OF THE S		5	-	0.76-0.86	0.87-1.13	1.14-1.73	1.74-4.55	4.56-12.16 5.07-13.51	>12.16	12.16-4.56	5.06
				.5	6,00	0.94-0.95	1.02-1.33	1.27-1.92	2.05-5.37	5.07-13.51	>13.51	13.51-5.07	5.00
					6,00	0.95-1.07	1.02-1.33	1.42-2.16	2.17-5.69	5.7-15.2	>14.36	15.2-5.7	5.69
	-	_		nclination and		4.5	3.5	2.5	1.5	0.5	0.0	-0.5	5.65
				ang		4.5	9.0		91750 13	0.0	0.0		
	Левая резьба/правое исполнение инструмента	Правая резьба/левое исполнение инструмента						standa (feed towar	rd helix d the chuck)			reverse helix (the c	feed av huck)

Если рекомендуемая опорная пластина отличается от поставляемой вместе с державкой, оформите на нее отдельный заказ. ПРИМЕЧАНИЕ. Оптимизируйте процесс резьбонарезания, используя соответствующий угол и рекомендуемые значения врезания. См. раздел «Техническая информация» на стр. D88—D110. Подробные сведения по выбору опорной пластины представлены на стр. D109—D110.

Шаг 5 • Выбор сплава и скорости резания

Рекомендации по выбору сплава и скорости резания — м/мин (фут/мин)

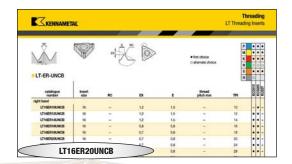
	обрабатываемый материал	Р	М	К	N	S
Perfect [™]	геометрия пластины	СВ стружколом			СВ стружколом	
Kenna	оптимальные режимы резания	KC5010 70–260	KC5010 90–245	KC5010 60–245	KC5010 90–550	KC5010 30–150
_ ×	лучший выбор	KC5025 50–230	KC5025 75–230	KC5025 50–180	KC5025 60–455	KC5025 20–120
a Universal™	геометрия пластины	-К стружколом				
Kenna	выбор	KU25T 45–210	KU25T 70–205	KU25T 45–160	KU25T 55–410	KU25T 20–110

ПРИМЕЧАНИЕ. Обзор пластин для резьбонарезания приведен на стр. D50.

kennametal.com D47

Рекомендуемые начальные скорости резания [м/мин]

	руппа териала		KC5010			KC5025			KU25T	
	0–1	135	200	260	105	165	230	95	150	210
	2	130	190	245	100	150	200	90	135	180
P	3	105	155	200	75	125	170	70	115	155
	4	70	120	160	60	95	130	55	85	115
	5	105	155	200	75	130	170	70	115	155
	6	70	120	160	50	90	130	45	80	115
	1	120	180	245	90	170	230	80	155	205
M	2	90	165	210	75	140	200	70	125	180
	3	90	165	210	75	135	200	70	120	180
	1	120	180	245	90	135	180	80	120	160
K	2	90	150	210	70	120	170	65	110	155
	3	60	105	150	50	85	120	45	75	110
	1–2	150	365	550	120	305	455	110	275	410
	3	90	135	180	60	105	150	55	95	135
N	4	120	305	455	100	200	305	90	180	275
	5	90	165	245	70	135	195	65	120	175
	6	120	210	305	100	170	245	90	155	220
	1	30	70	105	20	40	60	20	35	55
s	2	30	65	100	20	35	45	20	30	40
	3	30	65	100	20	35	45	20	30	40
	4	55	105	150	45	85	120	40	75	110
	1	30	45	60	-	-	-	-	-	-
н	2	15	30	45	_	-	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	4	_	-	-	_	_	-	_	-	-


ПРИМЕЧАНИЕ. Рекомендуемые НАЧАЛЬНЫЕ скорости резания указаны жирным шрифтом.

Как расшифровать обозначение по каталогу?

Каждый символ в обозначении по каталогу отражает характерные особенности данного изделия. Ниже приведена расшифровка обозначений.

LT

Тип пластины

LT = Треугольная пластина Laydown для резьбонарезания 16

Размеры пластины Исполнение пластины

ER

ER = Наружная правая резьба

EL = Наружная левая резьба

NR = Внутренняя правая резьба

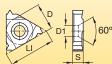
NL = Внутренняя левая резьба

20

Шаг резьбы UN

Профиль резьбы CB

Стружколом



= Без геометрии

СВ = Стружколом

К = Стружколом Kenna Universal™

размер пластины	LI (MM)	D (мм)	S (мм)	D1 (мм)					
11	11,0	6,35	3,20	3,25					
16	16,5	9,52	3,63	3,94					
22	22,0	12,70	4,78	4,88					
A									

	неполный профиль									
обозначение	шаг резьбы (мм)	TPI (ниток на дюйм)								
A	0,50–1,5	48–16								
AG	0,50–3,0	48–8								
G	1,75–3,0	14–8								
N	3,50–5,0	7–5								
	полный профиль									
фактическое значение ТРІ (ниток резьбы на дюйм) или шаг резьбы в мм	0,5–4,0	48–8								

ISO = Метрическая по ISO с углом 60°

 $\mathbf{UN} = \mathsf{A}$ мериканская резьба UN с углом 60°

 $\mathbf{60} \, = \,$ Неполный профиль с углом 60°

 $\mathbf{55} = \mathsf{He}$ полный профиль с углом 55°

 $\mathbf{W} =$ Резьба Whitworth 55°

BSPT = Британская стандартная трубная коническая резьба, 55°

NPT = Трубная резьба с углом 60° по американскому государственному стандарту

АСМЕ = Американская трапецеидальная

резьба Асте **STACME** = Американская укороченная

трапецеидальная резьба Acme **TR** = Трапецеидальная резьба DIN 103

RD = Круглая резьба DIN 405

UNJ = Контролируемый радиус впадины профиля резьбы с углом 60°

NPTF = Резьба с углом профиля 60∘ для соединений, работающих без смазки и уплотнений

API = Резьба АРІ (по стандарту Американского нефтяного института)

BUT = Трапецеидальная резьба API Buttress для обсадных труб

APIRD = Круглая резьба API

Преимущества системы Kennametal LT

Каждая коробка с 10-ю пластинами, за исключением пластин LT-K, содержит бесплатный ключ Torx и запасной стопорный винт.

ТІ	ип пластин	Ы						
СВ	K	без геометрии	профиль резьбы	стандарт	класс точности	полный профиль	область применения	стр.
LT-60CB	LT-60K	LT-60	Неполный профиль с углом 60°	_	_	нет	В основном применяется для резьбы с углом профиля 60°, такой как метрическая и UN, нарезаемой пластинами неполного профиля, предназначенными для формирования резьбы с различным шагом.	D53-D54, D66-D67
LT-ISOCB	LT-ISOK	LT-ISO	Метрическая система ISO	ISO R262, DIN 13	6g/6H	да	Широко используемая во всех отраслях промышленности V-образная метрическая резьба с углом профиля 60°.	D57–D58, D70–D71
LT-UNCB	LT-UNK	LT-UN	Американская резьба UN	ANSI (Американский национальный институт стандартов) В1.1:74	2A/2B	да	Широко используемая во всех отраслях промышленности V-образная дюймовая резьба с углом профиля 60°.	D62-D63, D74-D75
		LT-UNJ	UNJ	MIL-S-8879C	3A/3B	да	Наружная резьба с контролируемым радиусом впадины профиля с углом 60°, применяемая в оборонной и аэрокосмической промышленности.	D63, D75
LT-NPTCB		LT-NPT	NPT	Стандарт США B2.1:1968	Стандартная NPT	да	Трубные резьбы по национальному стандарту с углом профиля 60° для трубной арматуры.	D59, D72
LT-NPTFCB		LT-NPTF	NPTF	ANSI (Американский национальный институт стандартов) В 1.20.3-1976	Класс 2	да	Трубная резьба NPT с углом 60° для соединений, работающих без смазки и уплотнений, используемая для трубной арматуры.	D60, D72
	LT-55K	LT-55	Неполный профиль с углом 55°	-	_	нет	В основном применяется для нарезания резьбы с углом профиля 55°, такой как Whitworth, BSW и BSP, пластинами неполного профиля, предназначенными для формирования резьбы с различным шагом.	D52, D65–D66
		LT-BSPT	BSPT	Британский стандарт 21:1985	Стандартная BSPT	да	Профиль с углом 55° для трубной арматуры.	D56, D69
LT-WCB	LT-WK	LT-W	Whitworth, BSW, BSF, BSP	BS 84:1956, ISO 228/1:1985, DIN 259	Средний класс А	да	Широко используемая форма резьбы с углом профиля 55° для соединений газо- и водопроводов.	D64-D65, D76
21 1100	ZI WK	LT-API	Резьба АРІ для трубных соединений	API SPEC. 7:1990	Стандартная АРІ	да	V-образная резьба с углом профиля 60° для трубных соединений в нефтяной и газовой промышленности, включая формы V038R, V040 и V050.	D55, D68
		LT-APIRD	Круглая резьба АРІ	API STD. 5B:1979	Стандартная API RD	да	V-образный профиль резьбы с углом 60° и большим радиусом для обсадных труб, систем трубопроводов и магистральных трубопроводов нефтегазовой промышленности, включая формы круглой резьбы 8 и 10.	D55, D69
		LT-BUT	Трапецеидальная резьба API Buttress для обсадных труб	API SPEC. 7:1990	Стандартная АРІ	да	Трапецеидальная резьба с углом профиля 45°, используемая для соединения обсадных труб в нефтегазовой промышленности.	D56, D69
		LT-ACME	Трапецеидальная резьба Асте	ANSI (Американский национальный институт стандартов) В1.5:1988	3G	нет	Усеченная форма резьбы с углом профиля 29° для ходовых винтов, используемых в различных отраслях промышленности.	D54, D68
		LT-STACME	Укороченная трапецеидальная резьба Асте	ANSI (Американский национальный институт стандартов) В1.8:1988	2G	нет	Усеченная форма резьбы с углом профиля 29° с небольшой глубиной для ходовых винтов, используемых в различных отраслях промышленности.	D61, D73
		LT-RD	Круглая	DIN 405	7h/7H	да	Круглая форма резьбы для трубопроводной арматуры в химической и пищевой промышленности.	D60, D73
		LT-TR	Трапецеидальная резьба	DIN 103	7e/7H	нет	Усеченная форма метрической резьбы с углом профиля 30° для ходовых винтов.	D61, D73

D50 kennametal.com

Kennametal в сети Интернет кеnnar

kennametal.com

УЗНАЙТЕ НОВЕЙШУЮ ИНФОРМАЦИЮ О ПРОДУКЦИИ

Чем бы вы ни занимались, точением, фрезерованием или сверлением, компания Kennametal предоставит вам высокопроизводительный инструмент, отвечающий вашим конкретным условиям. Мы предлагаем стандартные и специальные решения для широкого спектра применения.

Узнайте о самых последних рекламных кампаниях и каталогах.

Зарегистрируйтесь на портале Коппест, чтобы воспользоваться всеми функциональными возможностями онлайн-заказа на сайте Kennametal.

СВЯЖИТЕСЬ С НАМИ

Наши клиенты — наша главная ценность. Поэтому мы стремимся предложить вам сервис и техническую поддержку самого высокого уровня. Мы открыты для диалога и готовы ответить на все ваши вопросы и замечания в течение 24 часов.

ВЫБЕРИТЕ БЛИЖАЙШЕГО К ВАМ РЕГИОНАЛЬНОГО ОФИЦИАЛЬНОГО ДИСТРИБЬЮТОРА

Кеппатетаl предлагает изделия мирового класса и глобальное сервисное обслуживание. Наши дистрибьюторы хорошо знакомы с нашей продукцией, но еще лучше они понимают ваши потребности. Они в состоянии найти грамотное применение глобальным ресурсам компании Кеппатетаl в ваших конкретных условиях — на вашем производстве, в вашем регионе, способствуя развитию вашего бизнеса.

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
s	•	•	•
Н	0		

LT-ER/L-55

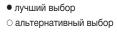
номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KCEOSE	K1125T	
правое исполнени	е									۱
LT16ERA55	16	0,05	0,8	0,89	0,50-1,50	16-48	-	•	• -	ı
LT16ERAG55	16	0,08	1,2	1,70	0,50-3,00	8-48	•	•	-	1
16ERG55	16	0,20	1,2	1,70	1,75-3,00	8-14	-	•	• -	
LT22ERN55	22	0,43	1,7	2,49	3,50-5,00	5-7	-	•	-	ı
левое исполнение										۱
LT16ELAG55	16	0,08	1,2	1,70	0,50-3,00	8-48	-	•	-	

0		

LT-ER/L-60

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025 KU25T
правое исполнени	ie							
LT16ERA60	16	0,05	0,8	0,9	0,50-1,50	16-48	•	• -
16ERAG60	16	0,08	1,2	1,7	0,50-3,0	8-48	-	• -
LT16ERAG60	16	0,08	1,2	1,7	0,50-3,0	8-48	•	- -
LT16ERG60	16	0,28	1,2	1,7	1,75-3,0	8-14	•	• -
LT22ERN60	22	0,53	1,7	2,5	3,5-5,0	5-7	-	• -
левое исполнение)							
LT16ELA60	16	0,05	0,8	0,9	0,50-1,50	16-48	-	• -
LT16ELAG60	16	0,08	1,2	1,7	0,50-3,0	8-48	-	• -
LT16ELG60	16	0,28	1,2	1,7	1,75-3,0	8-14	-	• -
LT22ELN60	22	0,53	1,7	2,5	3,5-5,0	5-7	-	• -

Неполный профиль с углом 60° для наружного резьбонарезания


LT-ER-60CB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
							1 1		
правое исполнени	е			_					

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
s	•	•	•
н	0		

LT-ER-60K

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KI IOST	NO 201
правое исполнение									
LT16ERAG60K	16	0,08	1,2	1,7	0,50-3,0	8-48	- -	- 0	•
	•				•			\neg	

LT-ER/L-ACME

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KCEOSE	
правое исполнение									
LT16ER10ACME	16	_	1,3	1,40	_	10	-	•	-
LT16ER12ACME	16	_	1,1	1,19	_	12	-	•	-
LT16ER16ACME	16	_	1,0	1,09	_	16	-	•	-
LT16ER8ACME	16	_	1,4	1,50	_	8	-	•	-
LT22ER5ACME	22	_	2,0	2,29	_	5	-	4	-
LT22ER6ACME	22	_	1,8	2,11	_	6	-	•	-

M K N S

Наружная резьба API для трубных соединений $\alpha = 1/2$ арктангенса

лучший выборальтернативный выбор

•	•	•
•	•	•
•	•	•
0	0	0
•	•	•
0		
	1	1

LT-ER/L-API

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнени	е								
LT22ER4API382	22	_	2,1	2,79	_	4	_		_
LT22ER4API502	22	_	2,0	2,90	_	4			_
LT22ER4API503	22	_	2,0	2,90	_	4		_	$ _{-} $
LT22ER5API403	22	_	1,8	2,60	_	5			
LT27ER4API502	28	0,64	2,0	2,79	_	4			$ _{-} $
LT27ER4API382	28	0,97	2,0	2,79	_	4	_	•	_

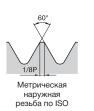
LT-ER/L-APIRD

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	VOE00E	31	KU25T
правое исполнени	е									
LT16ER10APIRD	16	_	1,2	1,40	_	10	-	1	D	-
LT16ER8APIRD	16	_	1,3	1,50	_	8	-	•	D	-
левое исполнение										
LT16EL8APIRD	16	_	1,3	1,50	_	8	-	1	D	-

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
S	•	•	•
Н	0		
			$\overline{}$

LT-ER/L-BSPT

	номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	NOUZOZ Z	NUZOI
г	равое исполнение									T	
	LT16ER11BSPT	16	_	1,1	1,50	_	11	-	•	• -	-
	LT16ER14BSPT	16	_	1,0	1,19	_	14	-	•	-	-
								- 1	1		- 1



LT-ER/L-BUT

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	- । ଦ	2000	KU251
правое исполнение LT22ER5BUT75	22	_	3,1	1,91	_	5	_	•	,	-

Р	•	•	•
М	•	•	•
Κ	•	•	•
N	0	0	0
s	•	•	•
Н	0		
-	 $\overline{}$	$\overline{}$	

LT-ER/L-ISO

1	I				1				1 1
номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение	,								
LT16ER05ISO	16	_	0,6	0,4	0,50	_	-	•	-
LT16ER075ISO	16	_	0,6	0,6	0,75	_	-	•	-
LT16ER10ISO	16	_	0,7	0,7	1,0	_	•	•	-
LT16ER125ISO	16	_	0,8	0,9	1,25	_	•	•	-
LT16ER15ISO	16	_	0,8	1,0	1,5	_	•	•	-
LT16ER175ISO	16	_	0,9	1,2	1,75	_	•	•	-
LT16ER20ISO	16	_	1,0	1,3	2,0	_	•	•	-
LT16ER25ISO	16	_	1,1	1,5	2,5	_	•	•	-
LT16ER30ISO	16	_	1,2	1,6	3,0	_	•	•	-
LT22ER35ISO	22	_	1,6	2,3	3,5	_	-	•	-
LT22ER40ISO	22	_	1,6	2,3	4,0	_	-	•	-
LT22ER45ISO	22	_	1,7	2,4	4,5	_	-	•	-
LT22ER50ISO	22	_	1,7	2,5	5,0	_	-	•	-
левое исполнение									
LT16EL15ISO	16	_	0,8	1,0	1,5	_	•	•	-
LT16EL175ISO	16	_	0,9	1,2	1,75	_	-	•	-
LT16EL20ISO	16	_	1,0	1,3	2,0	_	-	•	-
LT16EL25ISO	16	_	1,1	1,5	2,5	_	-	•	-
LT16EL30ISO	16	_	1,2	1,6	3,0	_	-	•	_
LT16EL05ISO	16	_	0,6	0,4	0,50	_	-	•	-
LT16EL075ISO	16	_	0,6	0,6	0,75	_	-	•	_
LT16EL10ISO	16	_	0,7	0,7	1,0	_	-	•	-
LT16EL125ISO	16	_	0,8	0,9	1,25	_	-	•	-
LT22EL35ISO	22	_	1,6	2,3	3,5	_	-	•	-

Р	•	•	•
М	•	•	•
Κ	•	•	•
N	0	0	0
S	•	•	•
Н	0		

Метрическая наружная резьба по ISO

LT-ER-ISOCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16ER05ISOCB	16	_	1,2	0,5	0,50	_	•	•	-
LT16ER075ISOCB	16	_	1,2	0,6	0,75	_	•	•	-
LT16ER10ISOCB	16	_	0,7	0,8	1,0	_	•	•	-
LT16ER125ISOCB	16	_	0,7	0,8	1,25	_	•	•	-
LT16ER15ISOCB	16	_	0,7	0,8	1,5	_	•	•	-
LT16ER175ISOCB	16	_	1,2	1,5	1,75	_	•	•	- -
LT16ER20ISOCB	16	_	1,2	1,5	2,0	_	•	•	-
LT16ER25ISOCB	16	_	1,2	1,5	2,5	_	-	•	-
LT16ER30ISOCB	16	_	1,3	1,5	3,0	_	•	•	-

лучший выбор	
O ORI TODUCTURIU IĂ RUIGO	,

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	
s	•	•	•
Н	0		

LT-ER/L-NPT

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	VOE00E	21	KU25T
правое исполнение										
LT16ER115NPT	16	_	1,1	1,5	_	11.5	•		•	-
LT16ER14NPT	16	_	0,9	1,2	_	14	•		•	-
LT16ER18NPT	16	_	0,8	1,0	_	18	•	٠ ٠	•	-
LT16ER27NPT	16	_	0,7	0,8	_	27	-	4	•	-
LT16ER8NPT	16	_	1,3	1,8	_	8	-	1	•	-
								- 1	- 1	

LT-ER-NPTCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	2000	KUZSI
правое исполнение										
LT16ER14NPTCB	16	_	1,1	1,5	_	14	•	•	,	-

Резьбонарезание

лучший выбор○ альтернативный выбор

Р		•	•	•
М		•	•	•
K		•	•	•
N		0	0	0
S		•	•	•
Н		0		
	-			

LT-ER/L-NPTF

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	5 5	KC5025	KU25T
правое исполнение								Г	T	
LT16ER115NPTF	16	_	1,1	1,5	_	11.5	-	•	,	_
LT16ER14NPTF	16	_	0,9	1,2	_	14	-	•	,	-

LT-ER-NPTFCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	5 8	KC5025	KU25T	
правое исполнение							П	П			
LT16ER115NPTFCB	16	_	1,1	1,5	_	11.5	-	•	•	-	١

LT-ER/L-RD

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	3	KC5025	KU25T	
правое исполнение											l
LT16ER8RD	16	0,76	1,4	1,30	_	8	-	•	•	-	١
LT22ER6RD	22	1,01	1,5	1,70	_	6	-	•	•	-	

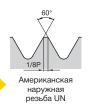
29°

лучший выбор○ альтернативный выбор

Р		•	•	•
М		•	•	•
K		•	•	•
N		0	0	С
S		•	•	•
Н		0		
	$\overline{}$	$\overline{}$	$\overline{}$	

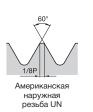
LT-ER/L-STACME

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16ER10STACME	16	_	1,2	1,30	_	10	_	•	-
LT16ER12STACME	16	_	1,2	1,19	_	12	-	•	-
LT16ER16STACME	16	_	1,0	0,99	_	16	-	•	-
LT16ER6STACME	16	_	1,7	1,80	_	6	-	•	-
LT16ER8STACME	16	_	1,4	1,50	_	8	-	•	-
LT22ER5STACME	22	_	2,1	2,29	_	5	-	•	-


Наружная трапецеидальная резьба

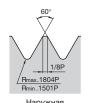
LT-ER/L-TR

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	2 2	KU25T
правое исполнение									
LT16ER2TR	16	_	1,1	1,30	2,0	_	-	•	- -
LT16ER3TR	16	_	1,3	1,50	3,0	_	-	•	-
LT22ER4TR	22	_	1,7	1,91	4,0	_	-	•	- -
LT22ER5TR	22	_	2,1	2,50	5,0	_	-	•	-


Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
S	•	•	•
Н	0		

LT-ER/L-UN

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16ER10UN	16	_	1,1	1,5	_	10	-	•	-
LT16ER12UN	16	_	1,1	1,4	_	12	•	•	-
LT16ER14UN	16	_	1,0	1,2	_	14	•	•	-
LT16ER16UN	16	_	0,9	1,1	_	16	•	•	-
LT16ER18UN	16	_	0,8	1,0	_	18	•	•	_
LT16ER20UN	16	_	0,8	0,9	_	20	•	•	-
LT16ER24UN	16	_	0,7	0,8	_	24	•	•	-
LT16ER28UN	16	_	0,6	0,7	_	28	•	•	-
LT16ER32UN	16	_	0,6	0,6	_	32	•	•	_
LT16ER36UN	16	_	0,6	0,6	_	36	-	•	-
LT16ER40UN	16	_	0,6	0,6	_	40	-	•	-
LT16ER48UN	16	_	0,6	0,6	_	48	-	•	-
LT16ER8UN	16	_	1,2	1,6	_	8	-	•	_
левое исполнение									
LT16EL24UN	16	_	0,7	0,8	_	24	-	•	-
LT16EL28UN	16	_	0,6	0,7	_	28	-	•	-
LT16EL8UN	16	_	1,2	1,6	_	8	-	•	-
LT16EL12UN	16	_	1,1	1,4	_	12	-	•	-
LT16EL14UN	16	_	1,0	1,2	_	14	-	•	-
LT16EL16UN	16	_	0,9	1,1	_	16	-	•	-
LT16EL18UN	16	_	0,8	1,0	_	18	-	•	-
LT16EL20UN	16	_	0,8	0,9	_	20	-	•	-



Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	С
S	•	•	•
Н	0		

LT-ER-UNCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16ER10UNCB	16	_	1,2	1,5	_	10	-	•	_
LT16ER12UNCB	16	_	1,2	1,5	_	12	•	•	-
LT16ER14UNCB	16	_	1,2	1,5	_	14	•	•	-
LT16ER16UNCB	16	_	0,8	0,8	_	16	•	•	-
LT16ER18UNCB	16	_	0,7	0,8	_	18	•	•	-
LT16ER20UNCB	16	_	0,7	0,8	_	20	•	•	-
LT16ER24UNCB	16	_	0,7	0,8	_	24	•	•	_
LT16ER28UNCB	16	_	0,7	0,8	_	28	•	•	-
LT16ER32UNCB	16	_	1,2	0,5	_	32	•	•	_
LT16ER8UNCB	16	_	1,3	1,5	_	8	•	•	-

LT-ER/L-UNJ

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16ER12UNJ	16	_	1,1	1,3	_	12	•	•	_
LT16ER14UNJ	16	_	1,0	1,2	_	14	•	•	-
LT16ER16UNJ	16	_	0,9	1,1	_	16	•	•	-
LT16ER18UNJ	16	_	0,8	1,0	_	18	•	•	-
LT16ER20UNJ	16	_	0,8	0,9	_	20	•	•	-
LT16ER24UNJ	16	_	0,7	0,8	_	24	-	•	-
LT16ER28UNJ	16	_	0,7	0,7	_	28	-	•	-
LT16ER32UNJ	16	_	0,6	0,7	_	32	-	•	-
левое исполнение									
LT16EL16UNJ	16	_	0,9	1,1	_	16	-	•	-

LT-ER/L-W

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16ER10W	16	_	1,1	1,50	_	10	-	•	-
LT16ER11W	16	_	1,1	1,50	_	11	•	•	-
LT16ER12W	16	_	1,1	1,40	_	12	-	•	. _
LT16ER14W	16	_	1,0	1,19	_	14	•	•	-
LT16ER16W	16	_	0,9	1,09	_	16	-		-
LT16ER18W	16	_	0,8	0,99	_	18	-	•	-
LT16ER19W	16	_	0,8	0,99	_	19	•	•	-
LT16ER20W	16	_	0,8	0,89	_	20	-	•	-
LT16ER24W	16	_	0,7	0,79	_	24	-	•	. _
LT16ER28W	16	_	0,6	0,69	_	28	-	•	-
LT16ER8W	16	_	1,2	1,50	_	8	-	•	. _
LT16ER9W	16	_	1,2	1,70	_	9	-	•	-
LT22ER6W	22	_	1,6	2,29	_	6	-	•	-
LT22ER7W	22	_	1,6	2,29	_	7	-	•	-
левое исполнение					•				
LT16EL11W	16	_	1,1	1,50	_	11	-	•	-
LT16EL14W	16	_	1,0	1,19	_	14	-	•	_

LT-ER-WCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16ER11WCB	16	_	1,3	1,50	_	11	-	•	-
LT16ER14WCB	16	_	1,3	1,50	_	14	•	•	-

LT-NR/L-55

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	5 5	KC5025	1000
правое исполнение										1
LT11NRA55	11	0,05	0,8	0,89	0,50-1,50	16-48	-	1	• -	
LT16NRA55	16	0,05	0,8	0,89	0,50-1,50	16-48	-		• -	1
LT16NRAG55	16	0,07	1,2	1,70	0,50-3,0	8-48	-		• -	.
LT16NRG55	16	0,21	1,2	1,70	1,75-3,0	8-14	-		• -	
LT22NRN55	22	0,43	1,7	2,49	3,5-5,0	5-7	-		• -	

Р	•	•	•
М	•	•	•
Κ	•	•	•
N	0	0	0
s	•	•	•
Н	0		

LT-NR/L-60		L1	<u>-N</u>	١R	/L·	-60
------------	--	----	-----------	----	-----	-----

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	TPI	KC5010	KC5025	KU25T
правое исполнение	,								
LT11NRA60	11	0,05	0,8	0,9	0,50-1,5	48-16	•	•	-
LT16NRA60	16	0,05	0,8	0,9	0,50-1,5	48-16	•	•	-
LT16NRAG60	16	0,05	1,2	1,7	0,50-3,0	48-8	•	•	-
LT16NRG60	16	0,15	1,2	1,7	1,75-3,0	14-8	•	•	-
LT22NRN60	22	0,31	1,7	2,5	3,5-5,0	7-5	_	•	_
левое исполнение									
LT11NLA60	11	0,05	0,8	0,9	0,50-1,5	48-16	-	•	-
LT16NLA60	16	0,05	0,8	0,9	0,50-1,5	48-16	-	•	-
LT16NLAG60	16	0,05	1,2	1,7	0,50-3,0	48-8	-	•	-
LT16NLG60	16	0,15	1,2	1,7	1,75-3,0	14-8	-	•	-
LT22NLN60	22	0,31	1,7	2,5	3,5-5,0	7-5	-	•	-

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	С
s	•	•	•
Н	0		
	$\overline{}$		П

LT-NR-60CB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	C502	ШH	ì
правое исполнение									Г	Ī
LT11NRA60CB	11	0,05	0,6	0,8	0,50-1,50	48-16	-	•	-	
LT16NRAG60CB	16	0,05	0,9	1,5	0,50-3,0	48-8	-	•	-	
LT16NRG60CB	16	0,16	1,0	1,5	1,75-3,0	14-8	-	•	-	

LT-NR-60K

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	2502	KU25T
правое исполнение									
LT16NRAG60K	16	0,04	1,2	1,7	0,50-3,0	48-8	_	-	•

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
S	•	•	•
Н	0		

LT-NR/L-ACME

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	3 5	KU25T
правое исполнение	е								
LT16NR10ACME	16	_	1,2	1,30	_	10	-	•	-
LT16NR12ACME	16	_	1,2	1,30	_	12	-	•	-
LT16NR8ACME	16	_	1,4	1,50	_	8	-		-
LT22NR5ACME	22	_	2,0	2,29	_	5	-	•	-
LT22NR6ACME	22	_	1,8	2,11	_	6	-	•	-
								_	

LT-NR/L-API

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнени	е								
LT22NR4API382	22	_	2,1	2,79	_	4	-	•	• <u>-</u>
LT22NR4API502	22	_	2,1	3,10	_	4	-	•	• -
LT22NR5API403	22	_	1,8	2,60	_	5	-	•	• -
LT27NR4API502	28	0,65	2,0	3,79	_	4	-	•	-
LT27NR4API382	28	0,99	2,0	2,79	_	4	-	•	-

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
s	•	•	•
Н	0		
_	П		$\overline{}$

LT-NR/L-APIRD

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT16NR10APIRD	16	_	1,2	1,40	_	10	-	•	-
LT16NR8APIRD	16	_	1,3	1,50	_	8	-	•	-

LT-NR/L-BSPT

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT11NR14BSPT	11	_	0,9	0,99	_	14	-	•	-
LT16NR11BSPT	16	_	1,1	1,50	_	11	-	•	-
LT16NR14BSPT	16	_	1,0	1,19	_	14	-	•	-
	•						1 1	ĺ	1

обсадных труб α = 1/2 арктангенса (ниток на фут/12) LT-NR/L-BUT

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	K1125T	1000
правое исполнение										1
LT22NR5BUT1	22	_	2,8	1,91	_	5	-	•	- -	
LT22NR5BUT75	22	_	2,8	1,91	_	5	_	•	_	.]

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
s	•	•	•
Н	0		

LT-NR/L	-ISO
---------	------

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнени	е								
LT11NR05ISO	11	_	0,6	0,4	0,50	_	-	•	_
LT11NR075ISO	11	_	0,6	0,6	0,75	_	-	•	-
LT11NR10ISO	11	_	0,6	0,7	1,0	_	-	•	_
LT11NR125ISO	11	_	0,8	0,9	1,25	_	-	•	-
LT11NR15ISO	11	_	0,8	1,0	1,5	_	•	•	_
LT11NR175ISO	11	_	0,9	1,1	1,75	_	-	•	-
LT11NR20ISO	11	_	0,9	1,1	2,0	_	-	•	_
LT16NR05ISO	16	_	0,6	0,4	0,50	_	-	•	-
LT16NR075ISO	16	_	0,6	0,6	0,75	_	-	•	-
LT16NR10ISO	16	_	0,6	0,7	1,0	_	•	•	-
LT16NR125ISO	16	_	0,8	0,9	1,25	_	-	•	-
LT16NR15ISO	16	_	0,8	1,0	1,5	_	•	•	-
LT16NR175ISO	16	_	0,9	1,2	1,75	_	-	•	_
LT16NR20ISO	16	_	1,0	1,3	2,0	_	•	•	-
LT16NR25ISO	16	_	1,1	1,5	2,5	_	-	•	_
LT16NR30ISO	16	_	1,1	1,5	3,0	_	•	•	-
LT22NR35ISO	22	_	1,6	2,3	3,5	_	-	•	-
LT22NR40ISO	22	_	1,6	2,3	4,0	_	-	•	-
LT22NR45ISO	22	_	1,6	2,4	4,5	_	-	•	-
LT22NR50ISO	22	_	1,6	2,3	5,0	_	-	•	-
левое исполнение									
LT11NL15ISO	11	_	0,8	1,0	1,5	_	-	•	-
LT11NL10ISO	11	_	0,6	0,7	1,0	_	-	•	-
LT16NL30ISO	16	_	1,1	1,5	3,0	_	-	•	-
LT16NL10ISO	16	_	0,6	0,7	1,0	_	-	•	-
LT16NL15ISO	16	_	0,8	1,0	1,5	_	-	•	-
LT16NL20ISO	16	_	1,0	1,3	2,0	_	-	•	-
LT16NL25ISO	16	_	1,1	1,5	2,5	_	-	•	-

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	C
s	•	•	•
Н	0		
			Г

LT-NR-ISOCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT11NR075ISOCB	11	_	1,2	0,5	0,75	_	-	•	-
LT11NR10ISOCB	11	_	0,7	0,8	1,0	_	-	•	-
LT11NR125ISOCB	11	_	0,7	0,8	1,25	_	-	•	-
LT11NR15ISOCB	11	_	0,7	0,8	1,5	_	-	•	_
LT16NR10ISOCB	16	_	0,7	0,8	1,0	_	-	•	-
LT16NR15ISOCB	16	_	0,7	0,8	1,5	_	-	•	-
LT16NR20ISOCB	16	_	1,1	1,5	2,0	_	-	•	-
LT16NR25ISOCB	16	_	1,1	1,5	2,5	_	-	•	_

Резьбонарезание

• лучший выбор ○ альтернативный выбор

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
s	•	•	•
Н	0		

LT-NR/L-NPT

номер по каталогу правое исполнение	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KCROSE	ÑΙΗ	
LT11NR14NPT	11	_	0,8	1,0	_	14	•	•	• -	
LT11NR18NPT	11	_	0,8	1,0	_	18	-	•	–	
LT16NR115NPT	16	_	1,1	1,5	_	11.5	•	•	• -	
LT16NR14NPT	16	_	0,9	1,2	_	14	-	•	–	Ī
LT16NR8NPT	16	_	1,3	1,8	_	8	-	•	-	

LT-NR-NPTCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T	
правое исполнение										١
LT16NR115NPTCB	16	_	1,1	1,5	_	11.5	-	•	-	١
LT16NR14NPTCB	16	_	1,4	1,2	_	14	-	•	-	

LT-NR/L-NPTF

	номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	VIIOET	10401
г	равое исполнение										
	LT11NR14NPTF	11	_	0,8	0,99	_	14	-	•	-	
	LT16NR14NPTF	16	_	0,9	1,19	_	14	-	•	-	

лучший выборальтернативный выбор

Р		•	•	•
М		•	•	•
K		•	•	•
N		0	0	0
s		•	•	•
Н		0		
	$\overline{}$			

LT-NR/L-RD

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнени	e								
LT16NR8RD	16	0,70	1,4	1,40	_	8	-	•	-
LT22NR6RD	22	0,93	1,5	1,70	_	6	-	•	-
							. 1	1	1

резьба Асте

LT-NR/L-STACME

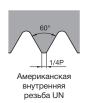
номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение	е								
LT16NR10STACME	16	_	1,2	1,30	_	10	-	•	-
LT16NR12STACME	16	_	1,1	1,19	_	12	-	•	-
LT16NR14STACME	16	_	1,1	1,09	_	14	-	•	-
LT16NR16STACME	16	_	1,0	0,99	_	16	-	•	-
LT16NR6STACME	16	_	1,7	1,80	_	6	-	•	-
LT16NR8STACME	16	_	1,4	1,50	_	8	-	•	-

LT-NR/L-TR

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	IN	KU25T
правое исполнение									
LT16NR2TR	16	_	1,1	1,30	2,0	_	-	•	-
LT16NR3TR	16	_	1,3	1,50	3,0	_	-	•	-
LT22NR4TR	22	_	1,7	1,91	4,0	_	-	•	-
LT22NR5TR	22	_	2.1	2.50	5.0	_	_	•	_

• лучший выбор

лу ший высор альтернативный выбор


Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	С
s	•	•	•
Н	0		
	 $\overline{}$		$\overline{}$

LT-NR/L-UN

номер по	размер						KC5010	5025	KU25T
каталогу	пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	5	5	조
правое исполнени	e						Т		
LT11NR16UN	11	_	0,9	1,1	_	16	•	•	-
LT11NR18UN	11	_	0,8	1,0	_	18	-	•	-
LT11NR20UN	11	_	0,8	0,9	_	20	-	•	-
LT11NR24UN	11	_	0,7	0,8	-	24	-	•	-
LT11NR28UN	11	_	0,6	0,7	_	28	-	•	_
LT11NR32UN	11	_	0,6	0,6	_	32	-	•	-
LT11NR40UN	11	_	0,6	0,6	_	40	-	•	-
LT16NR10UN	16	_	1,1	1,5	_	10	-	•	-
LT16NR12UN	16	_	1,1	1,4	_	12	•	•	_
LT16NR14UN	16	_	0,9	1,2	_	14	-	•	-
LT16NR16UN	16	_	0,9	1,1	_	16	-	•	-
LT16NR18UN	16	_	0,8	1,0	_	18	-	•	-
LT16NR20UN	16	_	0,8	0,9	_	20	-	•	_
LT16NR24UN	16	_	0,7	0,8	_	24	-	•	-
LT16NR28UN	16	_	0,6	0,7	_	28	-	•	-
LT16NR32UN	16	_	0,6	0,6	-	32	-	•	-
LT16NR8UN	16	_	1,1	1,5	_	8	-	•	-
левое исполнение									
LT11NL32UN	11	_	0,6	0,6	_	32	-	•	-
LT16NL10UN	16	_	1,1	1,5	_	10	-	•	-
LT16NL12UN	16		1,1	1,4	_	12	-	•	_
LT16NL16UN	16	_	0,9	1,1	_	16	-	•	-

лучший выбор○ альтернативный выбор

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	C
s	•	•	•
Н	0		

LT-NR-UNCB

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT11NR16UNCB	11	_	0,7	0,8	_	16	-	•	_
LT11NR18UNCB	11	_	0,6	0,8	_	18	-	•	-
LT11NR20UNCB	11	_	0,6	0,8	_	20	-	•	-
LT11NR24UNCB	11	_	0,7	0,8	_	24	-	•	-
LT11NR32UNCB	11	_	1,2	0,5	_	32	-	•	-
LT16NR10UNCB	16	_	1,1	1,5	_	10	-	•	-
LT16NR12UNCB	16	_	1,1	1,5	_	12	-	•	-
LT16NR14UNCB	16	_	1,1	1,5	_	14	-	•	-
LT16NR16UNCB	16	_	0,7	0,8	_	16	-	•	-
LT16NR18UNCB	16	_	0,6	0,8	_	18	-	•	-
LT16NR20UNCB	16	_	0,7	0,6	_	20	-	•	-
LT16NR8UNCB	16	_	1,1	1,5	_	8	-	•	-

LT-NR/L-UNJ

номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	IV ENDE	KC5025	Ş۱
правое исполнение										
LT11NR14UNJ	11	_	1,0	1,2	_	14	-	•	•	-
LT11NR16UNJ	11	_	0,9	1,1	_	16	-	•	•	-
LT11NR18UNJ	11	_	0,8	1,0	_	18	-	. 4	•	-
LT16NR12UNJ	16	_	1,1	1,3	_	12	-	1	•	-
LT16NR16UNJ	16	_	0,9	1,1	_	16	-		•	-

лучший выбор○ альтернативный выбор

Р	•	•	•
М	•	•	•
K	•	•	•
N	0	0	0
s	•	•	•
Н	0		

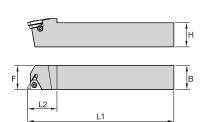
LT-NR/L-W

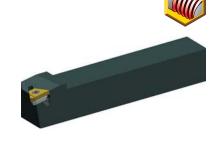
номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KC5025	KU25T
правое исполнение									
LT11NR14W	11	_	0,9	1,09	_	14	-	•	-
LT11NR19W	11	_	0,8	0,99	_	19	-	•	_
LT16NR10W	16	_	1,1	1,50	_	10	-	•	-
LT16NR11W	16	_	1,1	1,50	_	11	•	•	-
LT16NR12W	16	_	1,1	1,40	_	12	-	•	-
LT16NR14W	16	_	1,0	1,19	_	14	-	•	-
LT16NR16W	16	_	0,9	1,09	_	16	-	•	-
LT16NR19W	16	_	0,8	0,99	_	19	-	•	-
LT16NR20W	16	_	0,8	0,89	_	20	-	•	-
LT16NR8W	16	_	1,2	1,50	_	8	-	•	-
LT22NR7W	22	_	1,6	2,29	_	7	-	•	-
левое исполнение									
LT16NL11W	16	_	1,1	1,50	_	11	-	•	-

LT-NR-WCB

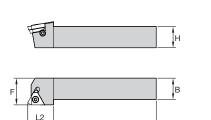
номер по каталогу	размер пластины	RC	EX	E	шаг резьбы, мм	ниток/дюйм	KC5010	KCEOSE	CZNCON	KU25T
правое исполнение									T	
LT16NR11WCB	16	_	1,3	1,50	_	11	-	•	•	-
LT16NR14WCB	16	_	1,3	1,50	_	14	-	•	• .	-

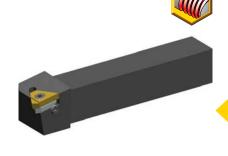
Как расшифровать обозначение по каталогу?


Каждый символ в обозначении по каталогу отражает характерные особенности данного изделия. Ниже приведена расшифровка обозначений.

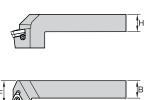


ПРИМЕЧАНИЕ. Державки с размером хвостовика больше 12 мм (1/2") поставляются вместе с прижимом и винтом пластины. Пластину следует крепить либо прижимом, либо винтом. Не используйте оба варианта одновременно. Система обозначения опорных пластин LT для резьбонарезания представлена на стр. D80.



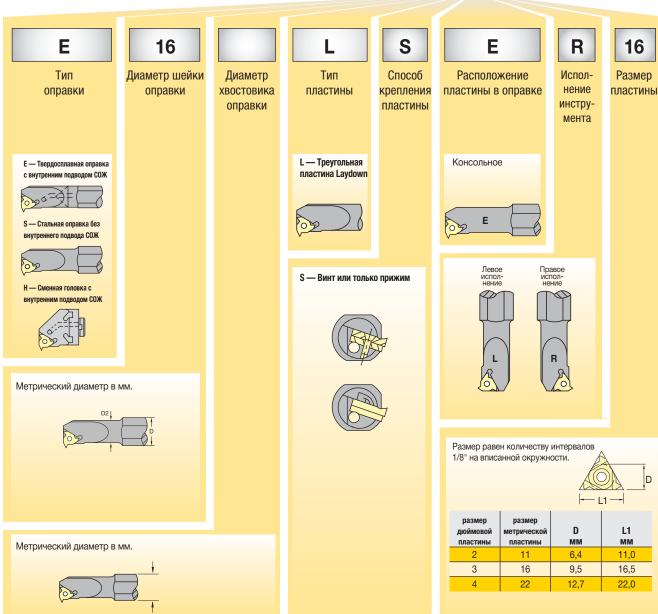


номер заказа	номер по каталогу	н	В	F	L1	эталонная пластина	опорная пластина	винт опорной пластины	Torx	Torx	винт пластины	Torx
правое исполнен	ие											
1136965	LSASR1212N16	12	12	16	85	LT16ER	_	_	_	_	SSA3T	T10
1136984	LSASR1616H16	16	16	16	100	LT16ER	SMYE3	SSY3T	T10	T15	SSA3T	T10
1136992	LSASR2020K16	20	20	20	125	LT16ER	SMYE3	SSY3T	T10	T15	SSA3T	T10
1137000	LSASR2525M16	25	25	25	150	LT16ER	SMYE3	SSY3T	T10	T15	SSA3T	T10
1137007	LSASR2525M22	25	25	25	150	LT22ER	SMYE4	SSY4T	T20	T20	SSA4T	T20
1125454	LSASR3232P16	32	32	32	170	LT16ER	SMYE3	SSY3T	T10	T15	SSA3T	T10
1611931	LSASR3232P22	32	32	32	170	LT22ER	SMYE4	SSY4T	T20	T20	SSA4T	T20
левое исполнени	ie											
1136926	LSASL1212N16	12	12	16	85	LT16EL	_	_	_	_	SSA3T	T10
1136935	LSASL1616H16	16	16	16	100	LT16EL	SMYI3	SSY3T	T10	T15	SSA3T	T10
1136943	LSASL2020K16	20	20	20	125	LT16EL	SMYI3	SSY3T	T10	T15	SSA3T	T10
1136951	LSASL2525M16	25	25	25	150	LT16EL	SMYI3	SSY3T	T10	T15	SSA3T	T10
1136959	LSASL2525M22	25	25	25	150	LT22EL	SMYI4	SSY4T	T20	T20	SSA4T	T20


LSS

номер заказа	номер по каталогу	н	В	F	L1	LH	эталонная пластина	опорная пластина	винт опорной пластины	Torx	винт пластины	Torx
правое исполнени	e											
1137054	LSSR2020K16Q	20	20	25	125	25	LT16ER	SMYE3	SSY3T	T10	SSA3T	T10
1137063	LSSR2525M16Q	25	25	32	150	25	LT16ER	SMYE3	SSY3T	T10	SSA3T	T10
1137069	LSSR2525M22Q	25	25	32	150	30	LT22ER	SMYE4	SSY4T	T20	SSA4T	T20
1611933	LSSR3232P16Q	32	32	40	170	32	LT16ER	SMYE3	SSY3T	T10	SSA3T	T10
1611935	LSSR3232P22Q	32	32	40	170	30	LT22ER	SMYE4	SSY4T	T20	SSA4T	T20
левое исполнение	١											
1192325	LSSL2020K16Q	20	20	25	125	25	LT16EL	SMYI3	SSY3T	T10	SSA3T	T10
1137022	LSSL2525M16Q	25	25	32	150	25	LT16EL	SMYI3	SSY3T	T10	SSA3T	T10
1137029	LSSL2525M22Q	25	25	32	150	30	LT22EL	SMYI4	SSY4T	T20	SSA4T	T20
1611934	LSSL3232P16Q	32	32	40	170	32	LT16EL	SMYI3	SSY3T	T10	SSA3T	T10

LSS-DH

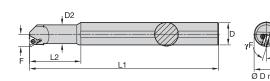

номер заказа правое исполне	номер по каталогу ние	н	В	F	L1	LH	эталонная пластина	опорная пластина	винт опорной пластины	Torx	винт пластины	Torx
1174502	LSSRDH2020K16Q	20	20	25	125	38	LT16ER	SMYE3	SSY3T	T10	SSA3T	T10
1611938	LSSRDH2525M16	25	25	32	150	38	LT16ER	SMYE3	SSY3T	T10	SSA3T	T10
1137036	LSSRDH2525M22Q	25	25	32	150	38	LT22ER	SMYE4	SSY4T	T20	SSA4T	T20
левое исполнен	ие											
1611939	LSSLDH2525M16	25	25	32	150	38	LT16EL	SMYI3	SSY3T	T10	SSA3T	T10

Как расшифровать обозначение по каталогу?

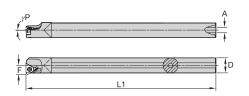
Каждый символ в обозначении по каталогу отражает характерные особенности данного изделия. Ниже приведена расшифровка обозначений.

Система обозначения опорных пластин LT для резьбонарезания

Подробные сведения об опорных пластинах и комплектах опорных пластин приведены на стр. D109-D110. D80

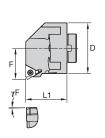

kennametal.com

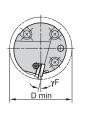
Стальная расточная оправка с внутренним подводом СОЖ.


- A-LSE

номер заказа	номер по каталогу	D	D min	D2	F	L1	L2	γF°	γP°	эталонная пластина	опорная пластина	винт опорной пластины	Torx	винт пластины	Torx
правое исполне	ние														
1131468	A1020LSER11	20	13	_	7,3	180	25	-15.0	-1.5	LT11NR	_	_	_	SSN2T	T8
1131481	A1320LSER11	20	16	_	8,9	180	32	-15.0	-1.5	LT11NR	_	_	_	SSN2T	T8
1612581	A1320LSER16	20	17	_	10,3	180	32	-15.0	-1.5	LT16NR	_	_	_	SSA3T	T10
1798921	A1616LSER16	16	20	16,0	11,3	150	32	-15.0	-1.5	LT16NR	_	_	_	SSA3T	T10
1131509	A1620LSER16	20	20	_	11,7	180	36	-15.0	-1.5	LT16NR	_	_	_	SSA3T	T10
1131524	A2020LSER16	20	24	20,0	13,4	180	40	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1131547	A2525LSER16	25	29	_	16,1	200	45	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1131566	A2525LSER22	25	32	_	17,2	200	45	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
1612584	A2020LSER22	20	27	20,0	15,6	180	50	-15.0	-1.5	LT22NR	_	_	_	SSA4T	T20
1131574	A2532LSER16	32	29	_	16,3	250	60	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1131582	A2532LSER22	32	32	_	17,4	250	60	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
1612587	A3232LSER22	32	39	32,0	21,5	250	60	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
1798922	A4040LSER22	40	47	40,0	25,8	300	60	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
1798920	A1010LSER11	10	13	10,0	7,3	100	100	-15.0	-1.5	LT11NR	_	_	_	SSN2T	T8
левое исполнен	ие														
1612586	A2532LSEL16	32	29	_	16,3	250	_	-15.0	-1.5	LT16NL	SMYE3	SSY3T	T10	SSA3T	T10
1131458	A1020LSEL11	20	13	_	7,3	180	25	-15.0	-1.5	LT11NL	_	_	_	SSN2T	T8
1131476	A1320LSEL11	20	16	_	8,9	180	32	-15.0	-1.5	LT11NL	_	_	_	SSN2T	T8
1798980	A1616LSEL16	16	20	16,0	11,3	150	32	-15.0	-1.5	LT16NL	_	_	_	SSA3T	T10
1131499	A1620LSEL16	20	20	_	11,5	180	40	-15.0	-1.5	LT16NL	_	_	_	SSA3T	T10
1131516	A2020LSEL16	20	24	20,0	13,4	180	40	-15.0	-1.5	LT16NL	SMYE3	SSY3T	T10	SSA3T	T10
1131532	A2525LSEL16	25	29	_	16,1	200	45	-15.0	-1.5	LT16NL	SMYE3	SSY3T	T10	SSA3T	T10
1131540	A2525LSEL22	25	32	_	17,2	200	45	-15.0	-1.5	LT22NL	SMYE4	SSY4T	T20	SSA4T	T20
1612585	A2020LSEL22	20	27	20,0	15,6	180	50	-15.0	-1.5	LT22NL	_	_	_	SSA4T	T20
1612588	A3232LSEL22	32	39	32,0	21,5	250	60	-15.0	-1.5	LT22NL	SMYE4	SSY4T	T20	SSA4T	T20
1799093	A4040LSEL22	40	47	40,0	25,8	300	60	-15.0	-1.5	LT22NL	SMYE4	SSY4T	T20	SSA4T	T20
1798979	A1010LSEL11	10	13	10,0	7,3	100	100	-15.0	-1.5	LT11NL	_	_	_	SSN2T	T8

Резьбонарезание



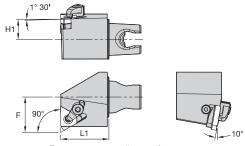

	вин	нт		
номер номер по эталонная оп	опорная опор	ной	винт	
заказа каталогу D D min F L1 A үF° үР° пластина пл	ластина пласт	гины Torx	пластины	Torx
правое исполнение				
1152844 E16RLSER16 16 20 11,5 200,0 6 -15 -1.5 LT16NR			SN3TPKG	T10
1152846 E20SLSER16 20 24 13,4 250,0 7 -15 -1.5 LT16NR S	SMYI3 SSY	/3T T10	SSA3T	T10
1152848 E25TLSER16 25 29 15,8 300,0 8 -15 -1.5 LT16NR S	SMYI3 SSY	/3T T10	SSA3T	T10

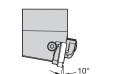
ПРИМЕЧАНИЕ. Позиции без опорной пластины предназначены для обработки с углом наклона 1,5°.

Сменная головка с внутренним подводом СОЖ

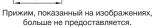
H-LSE

(₩)
ì	7

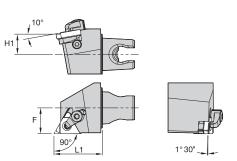

номер заказа	номер по каталогу	D	D min	L1	F	γF°	γP°	эталонная пластина	опорная пластина	винт опорной пластины	Torx	винт пластины	Torx
правое исполне	ние								1				
1095216	H16LSER3	25	30,5	41,3	16,4	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1095218	H20LSER3	32	36,8	41,3	19,3	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1095220	H24LSER3	38	44,7	41,3	22,5	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1095224	H24LSER4	38	45,3	41,3	24,7	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
1803997	H40LSER22	40	47,0	41,3	25,9	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
1803995	H50LSER16	50	54,0	41,3	28,6	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1803999	H50LSER22	50	56,0	41,3	30,5	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
3842905	H50LSER27	50	58,0	41,3	31,4	-15.0	-1.5	LT27NR	SMYI5	SSY5T	T25	SSA5T	T25
1095222	H32LSER3	51	61,0	41,3	32,4	-15.0	-1.5	LT16NR	SMYI3	SSY3T	T10	SSA3T	T10
1095226	H32LSER4	51	61,0	41,3	32,4	-15.0	-1.5	LT22NR	SMYI4	SSY4T	T20	SSA4T	T20
3842895	H32LSER5	51	61,0	41,3	32,5	-15.0	-1.5	LT27NR	SMYI5	SSY5T	T25	SSA5T	T25
3842897	H40LSER5	64	77,0	41,3	38,9	-15.0	-1.5	LT27NR	SMYI5	SSY5T	T25	SSA5T	T25

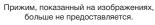

ПРИМЕЧАНИЕ. Сведения о расточных адаптерах см. на стр. В386-В387.

D82 kennametal.com



больше не предоставляется.

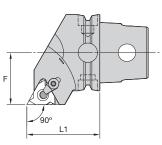

LSE • Консольное крепление



номер заказа	номер по каталогу	L1	F	H1	эталонная пластина	винт пластины	опорная пластина	винт опорной пластины
правое исполнение								
2399506	KM25LSER1630	30	22	12,5	LT16EL	SSA3T	SMYI3	SSY3T
левое исполнение 2399507	KM25LSEL1630	30	22	12,5	LT16ER	SSA3T	SMYE3	SSY3T

■ LSS • Прямое крепление

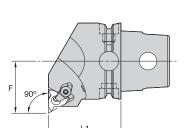
номер заказа правое исполнение		L1	F	H1	эталонная пластина	винт	опорная пластина	винт опорной пластины
2399504	KM25LSSR1630	30	16	12,5	LT16ER	SSA3T	SMYE3	SSY3T
3176219	KM25LSSR2230	30	16	12,5	LT22ER	SSA4T	SMYE4	SSY4T
левое исполнение								
2399505	KM25LSSL1630	30	16	12,5	LT16EL	SSA3T	SMYI3	SSY3T
3176220	KM25LSSL2230	30	16	12,5	LT22EL	SSA4T	SMYI4	SSY4T

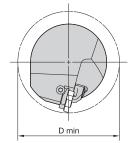




Прижим, показанный на изображениях, больше не предоставляется.

								V	02		
номер	номер	١	L1		F	эталонная	винт	опорная	винт опорной		
заказа	по каталогу	мм	дюйм	MM	дюйм	пластина	пластины	пластина	пластины	ΚΓ	фунт
правое исполн	ение										
3950857	KM40TSLSSR16	40	1.575	27	1.063	LT16ER	SSA3T	SMYE3	SSY3T	0,31	.68
3950858	KM40TSLSSR22	40	1.575	27	1.063	LT22ER	SSA4T	SMYE4	SSY4T	0,30	.66
3959401	KM40TSLSSR27	45	1.772	27	1.063	LT27ER	SSA5T	SMYE5	SSY5T	0,37	.82
левое исполне	ние										
3950855	KM40TSLSSL16	40	1.575	27	1.063	LT16EL	SSA3T	SMYI3	SSY3T	0,32	.70
3950856	KM40TSLSSL22	40	1.575	27	1.063	LT22EL	SSA4T	SMYI4	SSY4T	0,31	.68
3959400	KM40TSLSSL27	45	1.772	27	1.063	LT27EL	SSA5T	SMYI5	SSV5T	0.37	.82

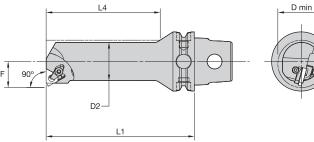




Прижим, показанный на изображениях, больше не предоставляется.

■ LSE-N 90° • Только внутренняя обработка

номер	номер		L1		F	_		эталонная	винт	опорная	винт опорной		4
заказа	по каталогу	MM	дюйм	ММ	дюйм	MM	дюйм	пластина	пластины	пластина	пластины	КГ	фунт
правое исполн	ение												
3950832	KM40TSLSER16N	40	1.575	27	1.063	54	2.126	LT16NR	SSA3T	SMYI3	SSY3T	0,35	.77
3950854	KM40TSLSER22N	40	1.575	27	1.063	54	2.126	LT22NR	SSA4T	SMYI4	SSY4T	0,35	.77
3959399	KM40TSLSER27N	45	1.772	27	1.063	54	2.126	LT27NR	SSA5T	SMYI5	SSY5T	0,39	.86
левое исполне	ние												
3950831	KM40TSLSEL16N	40	1.575	27	1.063	54	2.126	LT16NL	SSA3T	SMYE3	SSY3T	0,35	.77



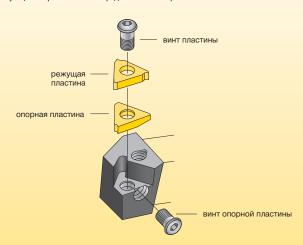
Прижим, показанный на изображениях, больше не предоставляется.

LSE 90°

номер	номер		D2	D	min		F	1	L4	1	L1	эталонная		
заказа	по каталогу	ММ	дюйм	MM	дюйм	ММ	дюйм	MM	дюйм	ММ	дюйм	пластина	КГ	фунт
правое исп	олнение													
3955464	KM40TSS10DLSER11	10	.39	13	.51	7	.276	35	1.38	60	2.362	LT11NR	0,22	.49
3955466	KM40TSS12ELSER11	12	.47	16	.63	9	.354	42	1.66	70	2.756	LT11NR	0,25	.56
3955468	KM40TSS16FLSER16	16	.63	20	.79	11	.433	56	2.21	80	3.150	LT16NR	0,28	.61
3955470	KM40TSS20GLSER16	20	.79	25	.98	13	.512	70	2.76	90	3.543	LT16NR	0,34	.75
3955472	KM40TSS25HLSER16	25	.98	32	1.26	17	.669	75	2.95	100	3.937	LT16NR	0,50	1.11
3955474	KM40TSS32JLSER16	32	1.26	40	1.57	22	.866	96	3.78	110	4.331	LT16NR	0,72	1.58
3955476	KM40TSS32JLSER22	32	1.26	40	1.57	22	.866	96	3.78	110	4.331	LT22NR	0,71	1.56
левое испол	лнение													
3955463	KM40TSS10DLSEL11	10	.39	13	.51	7	.276	35	1.38	60	2.362	LT11NL	0,22	.49
3955465	KM40TSS12ELSEL11	12	.47	16	.63	9	.354	42	1.65	70	2.756	LT11NL	0,25	.55
3955469	KM40TSS20GLSEL16	20	.79	25	.98	13	.512	70	2.76	90	3.543	LT16NL	0,34	.75
3955471	KM40TSS25HLSEL16	25	.98	32	1.26	17	.669	75	2.95	100	3.937	LT16NL	0,50	1.11
3955473	KM40TSS32JLSEL16	32	1.26	40	1.57	22	.866	96	3.78	110	4.331	LT16NL	0,72	1.58
3955475	KM40TSS32JLSEL22	32	1.26	40	1.57	22	.866	96	3.78	110	4.331	LT22NL	0,71	1.56

ПРИМЕЧАНИЕ. Позиции без опорной пластины предназначены для обработки с углом наклона 1,5°.

Комплектующие


номер	винт	опорная	винт опорной			
по каталогу	пластины	пластина	пластины			
правое исполнение						
KM40TSS10DLSER11	SSN2T	_	_			
KM40TSS12ELSER11	SSN2T	_	_			
KM40TSS16FLSER16	SN3TPKG	_	_			
KM40TSS20GLSER16	SSA3T	SMYI3	SSY3T			
KM40TSS25HLSER16	SSA3T	SMYI3	SSY3T			
KM40TSS32JLSER16	SSA3T	SMYI3	SSY3T			
KM40TSS32JLSER22	SSA4T	SMYI4	SSY4T			
левое исполнение						
KM40TSS10DLSEL11	SSN2T	_	_			
KM40TSS12ELSEL11	SSN2T	_	_			
KM40TSS20GLSEL16	SSA3T	SMYE3	SSY3T			
KM40TSS25HLSEL16	SSA3T	SMYE3	SSY3T			
KM40TSS32JLSEL16	SSA3T	SMYE3	SSY3T			
KM40TSS32JLSEL22	SSA4T	SMYF4	SSV4T			

Державки Laydown для резьбонарезания

Во всех случаях выбор соответствующей опорной пластины имеет важное значение.

Державки Kennametal поставляются с опорными пластинами, обеспечивающими угол подъема резьбы 1,5°. Замените опорную пластину, если угол наклона вашей резьбы отличается более чем на 1°. Более подробная информация по выбору соответствующей опорной пластины представлена на стр. D109—D110.

ſ			_	
	размеры пластин			
	и винтов	винт пластины	опорная пластина	винт и шайба опорной пластины
	3ER	SSA3T	SMYIE3	SSY3T
	3EL	SSA3T	SMYI3	SSY3T
	4ER	SSA4T	SMYIE4	SSY4T
	4EL AD	SSA4T	SMYI4	SSY4T
	Расточные оправки La	ydown для резьбонарезания		
	2IR	SSN2T	_	_
	21L (19)	SSN2T	_	_
	3IR	SSA3T	SMYI3	SSY3T
	31L A	SSA3T	SMYIE3	SSY3T
	4IR 🛕	SSA4T	SMYI4	SSY4T
	41L A	SSA4T	SMYIE4	SSY4T

результиру	ующий угол	3.5°	2.5°	1.5°	0.5°	-0.5°	-1.5°			
размер пластины (iC)	державка	код для заказа опорной пластины								
16 мм	наруж. правое исп./внутр. левое исп.	SM-YE3-2P	SM-YE3-1P	SM-YE3	SM-YE3-1N	SM-YE3-2N	SM-YE3-3N			
	нар. левое исп./внутр. правое исп.	SM-YI3-2P	SM-YI3-1P	SM-YI3	SM-YI3-1N	SM-YI3-2N	SM-YI3-3N			
22 мм	наруж. правое исп./внутр. левое исп.	SM-YE4-2P	SM-YE4-1P	SM-YE4	SM-YE4-1N	SM-YE4-2N	SM-YE4-3N			
	нар. левое исп./внутр. правое исп.	SM-YI4-2P	SM-YI4-1P	SM-YI4	SM-YI4-1N	SM-YI4-2N	SM-YI4-3N			

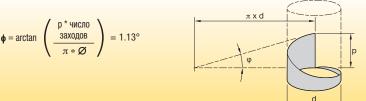
Комплект опорных пластин

Поскольку вам могут потребоваться различные опорные пластины, кроме поставляемых вместе со стандартными державками, мы предлагаем комплекты опорных пластин, которые будут востребованы в любом механообрабатывающем цеху.

размер пластины	размер опорной пластины (D)	код для заказа	комплект опорных пластин с разным углом наклона
3x	16 мм	ABY3SET	SM-YE3-2P, 1P, 1N, 2N, 3N SM-YI3-2P, 1P, 1N, 2N, 3N
4x	22 мм	ABY4	SM-YE4-2P, 1P, 1N, 2N, 3N SM-YI4-2P, 1P, 1N, 2N, 3N

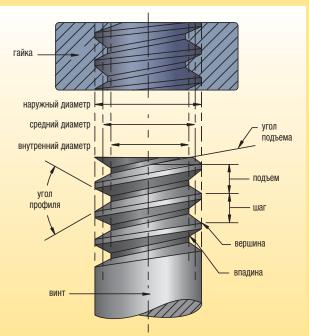
Угол наклона винтовой линии

Пример:


d = 48,06 MM (1,892")

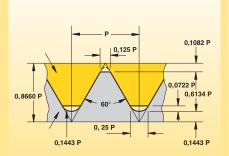
 $\mathbf{p} = 3,175 \text{ MM } (0,125")$

ф = угол подъема винтовой линии

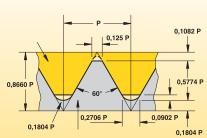

) = шаг

d = средний диаметр

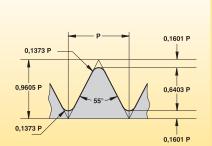
Основные определения резьбы


- Наружный диаметр наибольший диаметр воображаемого цилиндра, проходящего касательно винтовой нитки резьбы. Справедливо как для внутренней, так и для наружной резьбы.
- Средний диаметр это диаметр воображаемого цилиндра, который пересекает профиль резьбы в точках, где ширина витков составляет половину номинального шага резьбы. В «полнопрофильной резьбе» этот цилиндр пересекает профиль резьбы в точках, где ширина витков равна ширине впадин.
- Угол профиля угол профиля между боковыми поверхностями данной формы резьбы.
- Внутренний диаметр наименьший диаметр воображаемого цилиндра, проходящего касательно винтовой нитки резьбы. Справедливо как для внутренней, так и для наружной резьбы.
- Угол подъема угол, образованный между винтовой линией резьбы на среднем диаметре и плоскостью, перпендикулярной оси.
- 6. **Подъем резьбы** расстояние, на которое винтовая нить резьбы перемещается в осевом направлении за один оборот. У однозаходной резьбы шаг равен подъему. В общем случае подъем равен шагу, умноженному на число заходов.
- Шаг расстояние от точки на винтовой линии резьбы до аналогичной точки на следующем витке, измеренное параллельно оси резьбы.
- 8. **Вершина** наиболее удаленная наружная поверхность резьбы, которая соединяет боковые стороны профиля.
- Впадина наиболее удаленная внутренняя поверхность резьбы, которая соединяет боковые стороны профиля.

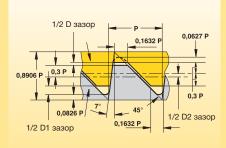
ПРИМЕЧАНИЕ. Число витков на дюйм (TPI) не показано.
Число витков на дюйм измеряется в осевом направлении.
Термины шаг и TPI взаимозависимы. TPI = 1/шаг



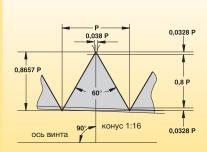
ISO M (метрическая) и UN (дюймовая)


Применение: все отрасли промышленности.

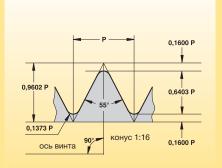
UNJ (контролируемый радиус впадины профиля)


Применение: авиационная и космическая промышленность.

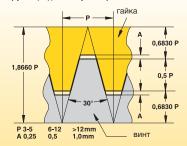
Резьба Whitworth (BSW)


Применение: арматура и соединения газо- и водопроводов, а также канализационные трубы (заменены стандартом ISO).

Американская трапецеидальная резьба Buttress


Применение: арматура и соединения труб.

NPT (Американская трубная резьба)


Применение: арматура и соединения труб.

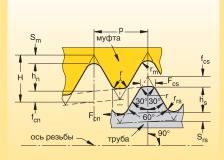
BSPT (Британская трубная резьба)

Применение: трубная резьба для паро-. газо- и водопроводов.

TR (трапецеидальная резьба) по DIN 103

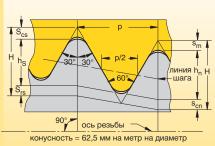
Применение: в машиностроении для изготовления ходовых винтов.

Трапецеидальная резьба Асте

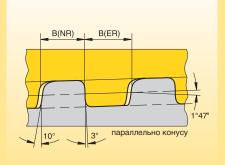


A = 0.4224 P

7 – 0,4224 Р—х D зазор C = 0,4224 Р—(D1 зазор —D2 зазор) Применение: в случаях, когда нормальная резьба


Асте является слишком глубокой.

Резьба АРІ для трубных соединений


ПРИМЕЧАНИЕ. утрированный угол конуса.

Круглая резьба АРІ для обсадных труб систем трубопроводов

ПРИМЕЧАНИЕ. утрированный угол конуса.

API Buttress

Рекомендуемые марки сплавов и соответствующие скорости для нарезания резьбы на заготовках из различных материалов

			рекомендуем	ая скорость реза	ния — м/мин	
		без покрытия		с PVD по	крытием	
группа обрабатываемого материала	обрабатываемый материал	K68	KC5010	KC5025	KC5410	KU25T
легкообрабатываемая углеродистая сталь	10L18, 10L45, 1213, 12L13, 12L14, 1140, 1141, 11L44, 1151, 10L50	_	91–198	45–198	_	91–137
углеродистая сталь	10063, 1008, 1010, 1015, 1018, 1020, 1025, 1026, 1108, 1117	_	76–198	45–175	_	76–122
легированные/инструментальные стали 150–325 НВ (до 35 HRC)	1042, 1045, 1070, 1080, 1085, 1090, 1095, 1541, 1561, 1572,	_	76–198	38–167	_	73–122
легированные/инструментальные стали 330—450 НВ (36—47 HRC)	5140, 8620, W1, O1, S1, P20, H13, D2, A6, H13, L6	_	61–160	_	_	61–106
мартенситная/ферритная нержавеющая/дисперсионно- твердеющая сталь	416, 420F, 440F, 405, 409, 429, 430, 434, 436, 442, PH	_	45–160	30–122	_	24–61
аустенитная нержавеющая сталь	201, 202, 301, 302, 303, 304, 304, 305, 321, 347, 348, 310, 314, 316, 316L, 330	61–106	61–198	46–137	_	24–106
серый чугун 135–270 НВ	класс 20, 30, 35, 45	61–91	61–237	46–122	_	30–110
серый чугун 275–450 НВ	класс 50, 55, 60	45–76	45–175	15–76	_	30–110
легированный/ковкий чугун	A536, J434C, 60-40-18, 80-55-06, 100-70-03	45–76	45–198	30–160	_	30–110
легкообрабатываемые алюминиевые сплавы	2024-T4, 2014-T6, 6061-T6 2011-T3, 3003-H18, A2, Alcan, Alcoa 510, дюралюминий	122–244	122–365	_	152–457	30–305
алюминиевые сплавы с высоким содержанием кремния	A380, A390, A380-1, A390-1, A380-2	_	_	_	_	_
медь/цинк/латунь		76–183	76–304	46–236	_	30–244
неметаллы	Графит, нейлон, пластмассы, каучук, фенольные смолы, углеродные материалы	122–457	122–396	46–305	_	30–244
жаропрочные сплавы 125–269 НВ (до 27 НRC)	Никель 200, Monel, R405, Monel K500, INCONEL 600, INCONEL [®] 625/901x750/718, Waspaloy, Hastelloy C	24–37	24–122	13–76	_	11–85
жаропрочные сплавы 260–450 НВ (26–47 НRC)	Rene 95, Waspaloy A286, Incoloy 800, Haynes 188, Stellite F, Haynes 25	24–30	30–76	6–61	_	11–61
титановые сплавы	Ti-6Al-4V, TI-5Al-2.5Sn	34–55	34–99	_	_	11–76

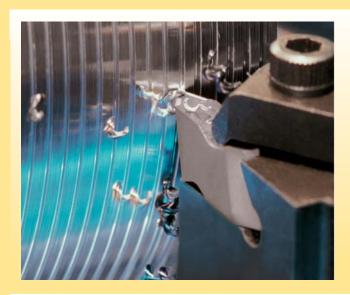
ПРИМЕЧАНИЕ. Если уровень твердости заготовки соответствует верхнему значению заданного диапазона, то начальная скорость (в м/мин) должная быть минимальной. Регулярно осматривайте элементы крепления пластины на предмет выявления износа.

Подготовка кромки: без покрытия— острая PVD покрытие— легкое хонингование за исключением передней поверхности

проблема	причина	возможное решение
резьба с рваной поверхностью	 Заусенцы. Рваная поверхность. Ступени. Неподходящая опорная пластина. Некорректная подача при врезании. 	 Измените величину врезания. Используйте пластины с полным профилем. Увеличьте концентрацию СОЖ. Увеличьте скорость. Проверьте правильность перемещения станка по оси «Z». Проверьте форму пластины. Проверьте правильность установки опорной пластины в системе LT. Рассчитайте профильный задний угол.
вибрации	 Недостаточная жесткость. Перемещение пластины. Некорректная подача при врезании. Смещение от линии центров станка. 	 Измените величину врезания. Минимизируйте вылет инструмента. Убедитесь в жестком закреплении заготовки. Проверьте пластину и ее закрепление. Убедитесь в точном положении режущего инструмента относительно оси заготовки. Скорректируйте число проходов. Меньшее число проходов снижает вибрацию.
нарост на режущей кромке	 Низкая скорость резания. Недостаточная подача СОЖ. Большая толщина снимаемой стружки. 	 Увеличьте скорость. Увеличьте концентрацию и/или подачу СОЖ. Отрегулируйте угол подачи на врезании. Увеличьте глубину резания на проход.
деформация кромки	 Неверно выбрана марка сплава. Слишком высокая скорость резания. Некорректный угол подачи на врезании. Недостаточная подача СОЖ. 	 Измените величину врезания. Используйте более износостойкую марку сплава (например, КС5010™). Уменьшите скорость. Увеличьте подачу СОЖ.
выкрашивание	 Некорректная подача при врезании. Большая толщина снимаемой стружки. Неверно выбрана марка сплава. Несоответствующая скорость резания. Недостаточная жесткость. 	 Измените величину врезания. Увеличьте или сократите число проходов. Исключите холостые проходы. Используйте более прочный сплав (например КС5025™). В случае выкрашиваний на вспомогательной кромке увеличьте скорость. В спучае выкрашиваний на главной кромке уменьшите скорость. Минимизируйте вылет инструмента. Проверьте жесткость и надежность закрепления пластины. Скорректируйте момент затяжки винта или прижима. Убедитесь в отсутствии возможного смещения детали. Рассчитайте профильный задний угол. Используйте подходящую опорную пластину.
скол вершины пластины	 Большая толщина снимаемой стружки. Слишком малый радиус при вершине. Неверно выбрана марка сплава. Некорректная подача при врезании. 	 Измените величину врезания. Уменьшите толщину снимаемой стружки. По возможности используйте пластины с большим радиусом при вершине. Используйте более прочный сплав (например КС5025).
износ по задней поверхности	 Неподходящая опорная пластина. Неверно выбрана марка сплава. Недостаточная подача СОЖ. Смещение от линии центров станка. Недостаточный угол наклона профиля. Некорректный угол подачи на врезании. 	Используйте подходящую опорную пластину. Используйте более износостойкую марку сплава (например КС5025). Увеличьте подачу СОЖ. Проверьте положение инструмента по высоте центров. (Чем меньше диаметр, тем большее значение приобретает точность установки по высоте центров). Рассчитайте профильный задний угол и замените опорную пластину, чтобы увеличить угол на изношенной задней поверхности. В случае износа на задней поверхности увеличьте угол врезания.

(продолжение)

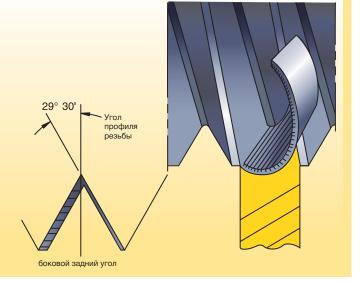
(Техническая информация • Рекомендации по выявлению и устранению проблем — продолжение)


								B03I	онжом	е реше	ение							
проблема	увеличьте скорость	уменьшите скорость	увеличьте толщину снимаемой стружки	уменышите толщину снимаемой стружки в месте возникновения проблемы	используйте более прочный твердый сплав	используйте сплав с более высокой твердостью	используйте СОЖ	используйте твердый сплав с покрытием	используйте пластину с полным профилем	измените угол врезания	убедитесь в невозможности смещения пластины	уменьшите вылет инструмента	подберите другую опорную пластину	используйте более стружколомающую геометрию	уменьшите глубину резания	проверьте взаимную соосность всех элементов	начинайте цикл резьбонарезания за 12 мм до начала резьбы	измените способ врезания
вибрации	•			•							•	•				•		•
заусенец на вершине	•								•									•
низкая стойкость инструмента		•	•	•		•		•										•
выкрашивания на главной кромке			•	•	•													
выкрашивания на вспомогательной кромке					•					•								
скол вершины пластины при заходе	•														•	•		
скол вершины пластины при выходе				•	•					•			•					•
нарост на режущей кромке	•		•				•	•										•
подрезание вершины													•					
непопадание в нитку резьбы																	•	
неудовлетворительный стружкоотвод														•				•

Конструкция пластин Top Notch™ Kennametal обеспечивает превосходный стружкоотвод при выполнении резьбонарезных операций. Запатентованная стружечная канавка Kennametal с выемкой, используемая в соответствии с нашими рекомендациями, будет успешно ломать стружку при выполнении большинства операций. Положительный передний угол уменьшает силы резания, что, в свою очередь, приводит к снижению температуры в зоне резания и повышению стойкости инструмента. Длинная витая стружка больше не повреждает поверхность заготовки. Исключена опасность повреждения при удалении длинной стружки из зоны обработки. Все эти преимущества способствуют повышению производительности резьбонарезания.

Последний проход

В некоторых циклах резьбонарезания для станков с ЧПУ последний проход выполняется с нулевым припуском. При обработке большинства углеродистых и легированных сталей величина не срезанного материала при последнем проходе может составлять 0,127 мм, что является допустимым. Для некоторых материалов проход с припуском от 0,025 до 0,076 мм позволяет улучшить качество обработанной поверхности, но при этом возможно возникновение проблем со стружкодроблением.



Программирование резьбонарезания

С помощью современных систем ЧПУ можно легко регулировать угол подачи при врезании, число проходов и глубину резания для каждого прохода. Стружка удаляется наиболее эффективно, когда угол подачи при врезании составляет 29° 30', при допустимом диапазоне от 15° до 30°. Минимальная глубина резания при каждом проходе должна составлять 0,127 мм. Обычно использование стандартных циклов ЧПУ приводит лишь к более или менее успешным результатам. Рекомендуется использовать индивидуальные программы резьбонарезания, написанные под конкретную резьбу.

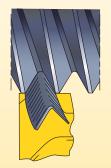
Угол подачи при врезании

Для эффективного и последовательного разделения стружки угол подачи при врезании должен составлять от 28° до 29° 30'. Не используйте пластины со стружколомающей геометрией, если угол подачи при врезании меньше 15°.



Радиальное врезание

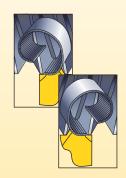
радиальное врезание


Преимущества —

- Благодаря формированию резьбы одновременно с двух сторон вся режущая кромка равномерно нагружена, что предотвращает выкрашивания.
- Равномерный износ пластины.

Модифицированное врезание

радиальное врезание


Преимущества —

- Инструмент формирует резьбу с двух сторон, что предотвращает выкрашивание, например, при врезании под углом 0°. Образуется стружка V-образной формы, однако, из-за неравномерной толщины она легко удаляется, как при боковой врезной подаче.
- Этот способ рекомендуется при использовании пластины со стружколомающей геометрией.
- Комбинирование радиальной и/или двусторонней боковой подачи.
- В результате повышается стойкость инструмента с равномерным изнашиванием задних поверхностей.

Двустороннее боковое врезание

двустороннее боковое врезание

Преимущества —

• Увеличенная стойкость инструмента, так как обе кромки одинаково задействованы в работе.

ПРИМЕЧАНИЕ. Данный способ формирования резьбы требует соответствующего программного обеспечения.

Обратное модифицированное врезание

радиальное врезание

Преимущества —

- Инструмент формирует резьбу с двух сторон, что предотвращает выкрашивание, например, при врезании по углом 0°. Образуется стружка V-образной формы, однако, из-за неравномерной толщины она легко удаляется, как при боковой врезной подаче.
- Этот способ рекомендуется при использовании пластины со стружколомающей геометрией.
- Комбинирование радиальной и/или двусторонней боковой подачи.
- В результате повышается стойкость инструмента с равномерным изнашиванием задних поверхностей.
- Рекомендуется для нарезания внутренней резьбы, поскольку стружка сходит в направлении, обратном направлению подачи.

Недостатки —

- При работе инструмента образуется «канал-стружка», доставляющая неудобство.
- При обработке высокопрочных материалов существует риск скола вершины.
- Риск образования заусенцев.
- Вся поверхность режущей кромки задействована в образовании резьбы, поэтому велика вероятность появления вибраций.

Недостатки —

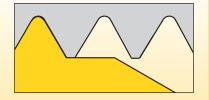
 Трудности, возникающие при врезной подаче 0°, отчасти снижены, поскольку силы резания лучше уравновешены, а сход стружки доставляет гораздо меньше проблем.

Недостатки —

• Не подходит для выполнения на стандартном оборудовании.

Недостатки —

• Требует специального программирования.


Неполный профиль

Форма зуба имеет универсальный профиль:

- Уменьшение складских запасов инструмента.
- Для различных шагов резьбы в определенном диапазоне.
- Наружный/внутренний диаметры должны быть предварительно точно обработаны.

Полный профиль

Форма зуба с полнопрофильным контуром, включая высоту зуба:

- Для прецизионной резьбы без заусенцев с заданным шагом.
- Общее назначение.
- Припуск на обработку для наружного и внутреннего диаметров около 0,0044–0,006".

Многозубый профиль

Многозубый профиль обычно имеет 2-3 зуба:

- Высокопроизводительное нарезание резьбы с меньшим числом проходов и более высокой стойкостью инструмента.
- Требуется высокая жесткость наладки и наличие сбега резьбы.

Формулы

формулы для метрической системы									
найти	найти дано								
м/мин	D (мм) об/мин	м/мин = $\frac{\pi x D}{1000} x \text{об/мин}$							
об/мин	D (мм) м/мин	об/мин = м/мин х 1000							

Условные обозначения

 ${\rm M/Muh}$ = ${\rm скорость}\,{\rm B}\,{\rm метраx}\,{\rm B}\,{\rm минуту}$ RPM = ${\rm число}\,{\rm оборотов}\,{\rm B}\,{\rm минуту}$ D = ${\rm диаметр}\,{\rm детали}$ = 3,1416

Максимальная скорость резания

Максимальная скорость резания часто ограничена максимальной скоростью подачи инструмента (дюйм/мин или мм/мин), допустимой для данного станка.

Формула для метрической системы: максимальная скорость резания (м/мин) = диаметр детали (мм) х 3,14 х (1/шаг) х макс. подача (мм/мин)

1000 мм

Профильный задний угол

 γ = arctan (sin ($\beta/2$) * tan(α))

ү = боковой задний угол

в = угол профиля резьбы

α = радиальный угол наклона

Профиль	Угол	Наружная	Внутренняя
UN & ISO	60	5.3	8
BSW	55	4.8	7.3
TR	30	2.6	4
ACME	29	2.6	3.9
AMBUT	7	.6	.9
AMBUT	45	4	6

Рекомендации по определению числа проходов при врезании

ТРІ (ниток на дюйм)	48–32	28-24	20–16	14–12	11.5–9	8–6	5–4	3–2
метрический шаг (мм)	0,50-0,75	0,80-1	1,25–1,5	1,75–2	2,5–3	3,5–4	4,5–6	8,0
Тип резьбы			реком	іендуемое	число про	ходов		
Обычные резьбы с V-образным профилем — ISO, UN, UNJ, NPT, Whitworth, BSPT, резьба API для трубных соединений	4–5	5–6	6–8	8–10	9–12	12–15	14–16	15–25
Трапецеидальная резьба Acme и Trapez, круглая резьба, круглая резьба API	_	_	5–6	7–8	10–11	12–13	13–15	18–20
Укороченная трапецеидальная резьба Асте, резьба API Buttress	_	_	5	5–6	7–8	8–10	10–12	14–16
Американская трапецеидальная резьба Buttress		_	7–8	9–10	11–12	13–15	17–19	22–24

ПРИМЕЧАНИЕ. При последнем проходе минимальная величина врезания должна составлять 0,05 мм во избежание упрочнения и чрезмерного абразивного износа режущей кромки инструмента.

Постоянство снимаемого припуска при резьбонарезании

Как правило, использование стандартных ЧПУ циклов резьбонарезания приводит лишь к относительно хорошим результатам. Например, 8-шаговая наружная резьба имеет глубину 2 мм (0,0789").

$$\Delta ap_{X} = \frac{ap}{\sqrt{nap-1}} * \sqrt{\phi}$$

Формула для врезания с постоянным сходом стружки

∆ар = радиальная врезная подача

х = фактический проход (от 1 до пар)

пар = число проходов

= 1-й проход, 0.3

2-й проход, 1

3-й проход и далее, х-1

Использование радиального врезания

Режущая кромка подвергается изгибающему напряжению, вызванному длинной стружкой V-образной формы, образующейся при обработке стальных заготовок.

При больших силах резания и малой толщине резания необходимо использовать пластину с острой высокопрочной кромкой.

Использование бокового врезания

Меньший изгибающий момент и сбалансированные усилия резания обеспечивают более благоприятную форму стружки и допускают большую толщину резания.

Рекомендуется применять марки сплавов с повышенной твердостью, обладающие хорошей износостойкостью и красностойкостью.

Рекомендации по величине врезания Как определить число и величину проходов

Число проходов «s» на резьбу является определяющим для успешного резьбонарезания и токарной обработки вершины. В таблицах на следующих страницах представлены стандартные значения, рекомендуемые для обработки стали. Соответствующее число проходов определяется эмпирическим путем.

В случае поломки пластины следует увеличить число проходов. При увеличении степени износа рекомендуется сократить число проходов. Толщина стружки не должна быть меньше 0,05 мм. Припуск на диаметр не должен превышать 0,2 мм.

шаг резьбы Р (мм)	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00
Т Ар (мм)	0,305	0,457	0,610	0,762	0,914	1,067	1,219	1,524	1,829	2,159	2,464	2,769	3,073
N Ap	4	4	5	6	6	8	8	10	12	14	15	15	16
		значения для бокового врезания (X/Z)											
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0,096	0,145	0,167	0,187	0,224	0,221	0,252	0,278	0,302	0,328	0,361	0,405	0,435
2	0,080	0,119	0,138	0,154	0,185	0,182	0,208	0,230	0,249	0,271	0,298	0,335	0,359
3	0,073	0,109	0,126	0,141	0,169	0,167	0,191	0,210	0,228	0,248	0,273	0,306	0,329
4	0,056	0,084	0,097	0,108	0,130	0,128	0,146	0,161	0,175	0,190	0,209	0,235	0,252
5			0,082	0,091	0,110	0,108	0,123	0,136	0,148	0,160	0,176	0,198	0,213
6				0,080	0,097	0,095	0,109	0,120	0,130	0,141	0,155	0,175	0,187
7						0,086	0,098	0,108	0,118	0,128	0,141	0,158	0,169
8						0,079	0,090	0,100	0,108	0,118	0,129	0,145	0,156
9								0,093	0,101	0,109	0,120	0,135	0,14
10								0,087	0,095	0,103	0,113	0,127	0,136
11									0,089	0,097	0,107	0,120	0,129
12									0,085	0,092	0,102	0,114	0,122
13										0,088	0,097	0,109	0,117
14										0,085	0,093	0,105	0,11
15											0,090	0,101	0,108
16													0,104

ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

0,914

1,067

1,219

1,524

1,829

2,159

2,464

2,769

3,073

0,762

Метрическая система ISO, внутренняя резьба

0,610

0,457

0,305

Т Ар (мм)

шаг резьбы Р (мм)	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00
Т Ар (мм)	0,279	0,406	0,533	0,686	0,813	0,940	1,092	1,346	1,626	1,905	2,159	2,438	2,718
N Ap	4	4	5	6	6	8	8	10	11	12	14	15	16
						значения дл	я бокового вр	резания (Х/Z)					
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0,088	0,129	0,146	0,168	0,199	0,195	0,226	0,246	0,282	0,315	0,328	0,357	0,384
2	0,073	0,106	0,121	0,139	0,164	0,161	0,187	0,203	0,232	0,260	0,271	0,295	0,317
3	0,067	0,097	0,110	0,127	0,151	0,147	0,171	0,186	0,213	0,238	0,248	0,270	0,291
4	0,051	0,075	0,085	0,097	0,116	0,113	0,131	0,143	0,163	0,183	0,190	0,207	0,223
5			0,071	0,082	0,097	0,095	0,111	0,120	0,138	0,154	0,160	0,175	0,188
6				0,072	0,086	0,084	0,097	0,106	0,121	0,136	0,141	0,154	0,166
7						0,076	0,088	0,096	0,110	0,123	0,128	0,139	0,150
8						0,070	0,081	0,088	0,101	0,113	0,118	0,128	0,138
9								0,082	0,094	0,105	0,109	0,119	0,128
10								0,077	0,088	0,099	0,103	0,112	0,120
11									0,083	0,093	0,097	0,106	0,114
12									0,000	0,089	0,092	0,101	0,108
13										0,000	0,088	0,096	0,103
14										0,000	0,085	0,092	0,099
15											0,000	0,089	0,096
16													0,092
Т Ар (мм)	0,279	0,406	0,533	0,686	0,813	0,940	1,092	1,346	1,626	1,905	2,159	2,438	2,718

ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

kennametal.com D97

Резьба UN	I, наруж	кная											
TPI (ниток на дюйм)	24	20	18	16	14	12	11	10	9	8	7	6	5
Т Ар (мм)	0,660	0,787	0,864	0,965	0,914	1,067	1,219	1,524	1,829	2,159	2,464	2,769	3,073
N Ap	5	6	6	7	9	9	10	11	12	13	14	15	16
		значения для бокового врезания (X/Z)											
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0,181	0,193	0,212	0,216	0,177	0,207	0,223	0,264	0,302	0,341	0,374	0,405	0,435
2	0,149	0,159	0,175	0,178	0,146	0,171	0,184	0,218	0,249	0,282	0,309	0,335	0,359
3	0,137	0,146	0,160	0,163	0,134	0,156	0,168	0,200	0,228	0,258	0,283	0,306	0,329
4	0,105	0,112	0,123	0,125	0,103	0,120	0,129	0,153	0,175	0,198	0,217	0,235	0,252
5	0,088	0,094	0,103	0,106	0,087	0,101	0,109	0,129	0,148	0,167	0,183	0,198	0,213
6		0,083	0,091	0,093	0,076	0,089	0,096	0,114	0,130	0,147	0,161	0,175	0,187
7				0,084	0,069	0,080	0,087	0,103	0,118	0,133	0,146	0,158	0,169
8					0,063	0,074	0,080	0,095	0,108	0,122	0,134	0,145	0,156
9					0,059	0,069	0,074	0,088	0,101	0,114	0,125	0,135	0,145
10							0,070	0,083	0,095	0,107	0,117	0,127	0,136
11								0,078	0,089	0,101	0,111	0,120	0,129
12									0,085	0,096	0,105	0,114	0,122
13										0,092	0,101	0,109	0,117
14											0,097	0,105	0,112
15												0,101	0,108
16													0,104
Т Ар (мм)	0,660	0,787	0,864	0,965	0,914	1,067	1,219	1,524	1,829	2,159	2,464	2,769	3,073

ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

Резьба	UN,	внут	ренняя
--------	-----	------	--------

TPI (ниток на дюйм)	24	20	18	16	14	12	11	10	9	8	7	6	5
Т Ар (мм)	0,584	0,686	0,762	0,864	0,991	1,143	1,245	1,372	1,524	1,727	1,956	2,286	2,743
N Ap	5	6	6	7	8	9	9	10	11	12	13	14	15
					ЗНа	ачения для	бокового в	зрезания (Х	(/Z)				
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0,160	0,168	0,187	0,193	0,205	0,221	0,241	0,250	0,264	0,285	0,309	0,347	0,402
2	0,132	0,139	0,154	0,159	0,169	0,183	0,199	0,207	0,218	0,236	0,255	0,287	0,332
3	0,121	0,127	0,141	0,146	0,155	0,167	0,182	0,189	0,200	0,216	0,234	0,263	0,304
4	0,093	0,097	0,108	0,112	0,119	0,128	0,140	0,145	0,153	0,166	0,179	0,202	0,233
5	0,078	0,082	0,091	0,094	0,100	0,108	0,118	0,123	0,129	0,140	0,151	0,170	0,196
6		0,072	0,080	0,083	0,088	0,095	0,104	0,108	0,114	0,123	0,133	0,150	0,173
7				0,075	0,080	0,086	0,094	0,098	0,103	0,111	0,120	0,135	0,156
8					0,073	0,079	0,086	0,090	0,095	0,102	0,111	0,124	0,144
9						0,074	0,080	0,084	0,088	0,095	0,103	0,116	0,134
10								0,078	0,083	0,089	0,097	0,109	0,126
11									0,078	0,085	0,092	0,103	0,119
12										0,080	0,087	0,098	0,113
13											0,083	0,094	0,108
14											0,080	0,090	0,104
15													0,100
16													
Т Ар (мм)	0,584	0,686	0,762	0,864	0,991	1,143	1,245	1,372	1,524	1,727	2,036	2,286	2,743

ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

D98 kennametal.com

Резьба NPT, наружная и внутренняя

i coboa ivi	i, napy	KIIQ/I II DI	iy i poiiiiz	171	
TPI (ниток на дюйм)	27	18	14	11.5	8
Т Ар (мм)	0,762	1,118	1,422	1,727	2,489
N Ap	6	8	10	12	14
		значения д	ля бокового вр	езания (Х/Z)	,
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z
1	0,187	0,231	0,260	0,285	0,378
2	0,154	0,191	0,214	0,236	0,312
3	0,141	0,175	0,196	0,216	0,286
4	0,108	0,134	0,151	0,166	0,219
5	0,091	0,113	0,127	0,140	0,185
6	0,080	0,100	0,112	0,123	0,163
7		0,090	0,101	0,111	0,147
8		0,083	0,093	0,102	0,135
9			0,087	0,095	0,126
10			0,081	0,089	0,118
11				0,085	0,112
12				0,080	0,107
13					0,102
14					0,098
15					
16					
Т Ар (мм)	0,762	1,118	1,422	1,727	2,489

Резьба BSPT, наружная и внутренняя

ТРІ (ниток на дюйм)	28	19	14	11						
Т Ар (мм)	0,584	0,864	1,168	1,448						
N Ap	5	8	10	12						
		значения для бокового врезания (X/Z)								
порядок проходов	X/Z	X/Z	X/Z	X/Z						
1	0,160	0,179	0,213	0,239						
2	0,132	0,148	0,176	0,197						
3	0,121	0,135	0,161	0,181						
4	0,093	0,104	0,124	0,139						
5	0,078	0,087	0,104	0,117						
6		0,077	0,092	0,103						
7		0,070	0,083	0,093						
8		0,064	0,076	0,086						
9			0,071	0,080						
10			0,067	0,075						
11				0,071						
12				0,067						
13										
14										
15										
16										
Т Ар (мм)	0,584	0,864	1,168	1,448						

ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

Трапецеидальная резьба по DIN 103, наружная и внутренняя

	_ , ,				
шаг	1,5	2	3	4	5
Т Ар (мм)	1,016	1,245	1,753	2,261	2,743
N Ap	6	8	10	12	14
		значения д	ля бокового вр	езания (Х/Z)	
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z
1	0,249	0,258	0,320	0,373	0,417
2	0,206	0,213	0,264	0,308	0,344
3	0,188	0,195	0,242	0,282	0,315
4	0,144	0,150	0,186	0,217	0,242
5	0,122	0,126	0,157	0,183	0,204
6	0,107	0,111	0,138	0,161	0,180
7		0,100	0,125	0,145	0,162
8		0,092	0,115	0,134	0,149
9			0,107	0,125	0,139
10			0,100	0,117	0,131
11				0,111	0,123
12				0,105	0,117
13					0,112
14					0,108
15					
16					
Т Ар (мм)	1,016	1,245	1,753	2,261	2,743

Круглая резьба по DIN 405, наружная и внутренняя

шаг	10	8	6
Т Ар (мм)	1,321	1,626	2,159
N Ap	8	10	12
	значен	ния для бокового врезани	ıя (X/Z)
порядок проходов	X/Z	X/Z	X/Z
1	0,273	0,297	0,357
2	0,226	0,245	0,294
3	0,207	0,224	0,270
4	0,159	0,172	0,207
5	0,134	0,145	0,174
6	0,118	0,128	0,154
7	0,107	0,116	0,139
8	0,098	0,106	0,128
9		0,099	0,119
10		0,093	0,112
11			0,106
12			0,100
13			
14			
15			
16			
Т Ар (мм)	1,321	1,626	2,159

ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

kennametal.com D99

Резьба Wh	itworth.	наружі	ная и вн	іутренн	яя								
ТРІ (ниток на дюйм)	28	20	19	16	14	12	11	10	9	8	7	6	5
Т Ар (мм)	0,584	0,813	0,813	0,864	1,016	1,346	1,473	1,626	1,803	2,032	2,311	2,718	3,251
N Ap	5	6	6	8	8	9	9	10	11	12	14	15	16
		значения для бокового врезания (X/Z)											
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0,160	0,199	0,199	0,179	0,210	0,261	0,285	0,297	0,312	0,336	0,351	0,398	0,460
2	0,132	0,164	0,164	0,148	0,174	0,215	0,236	0,245	0,258	0,277	0,290	0,329	0,380
3	0,121	0,151	0,151	0,135	0,159	0,197	0,216	0,224	0,236	0,254	0,266	0,301	0,348
4	0,093	0,116	0,116	0,104	0,122	0,151	0,166	0,172	0,181	0,195	0,204	0,231	0,267
5	0,078	0,097	0,097	0,087	0,103	0,128	0,140	0,145	0,153	0,164	0,172	0,195	0,225
6		0,086	0,086	0,077	0,091	0,112	0,123	0,128	0,135	0,145	0,151	0,171	0,198
7				0,070	0,082	0,102	0,111	0,116	0,122	0,131	0,137	0,155	0,179
8				0,064	0,075	0,093	0,102	0,106	0,112	0,120	0,126	0,143	0,165
9						0,087	0,095	0,099	0,104	0,112	0,117	0,133	0,153
10								0,093	0,098	0,105	0,110	0,125	0,144
11									0,093	0,099	0,104	0,118	0,136
12										0,095	0,099	0,112	0,130
13											0,095	0,107	0,124
14											0,091	0,103	0,119
15												0,099	0,114
16													0,110
Т Ар (мм)	0,584	0,813	0,813	0,864	1,016	1,346	1,473	1,626	1,803	2,032	2,311	2,718	3,251

ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

Внутренняя резьба, нарезанная многозубой пластиной

		Метрическая резьба ISO					Мет	рическая	резьба IS	0 и резьба	a UN	Резьба Whitworth			
тип	3M	2M	3M	2M	3M	2M	2M	3M	2M	3M	2M	2M	2M	3M	2M
шаг (мм)	1,0	1,5	1,5	2,0	2,0	3,0	_	_	_	_	_	_	_	_	_
ТРІ (ниток на дюйм)	_	_	_	_	_	_	16	16	12	12	8	11	11,5	11,5	8
общая глубина	0,609	0,838	0,838	1,168	1,168	1,778	0,939	0,939	1,245	1,245	1,880	1,575	1,753	1,753	2,540
1	0,330	0,381	0,508	0,508	0,711	0,558	0,431	0,558	0,558	0,762	0,584	0,736	0,584	0,812	0,889
2	0,279	0,254	0,330	0,381	0,457	0,482	0,304	0,381	0,406	0,482	0,508	0,482	0,508	0,558	0,635
3	_	0,203	_	0,279	_	0,431	0,203	_	0,279	_	0,431	0,355	0,355	0,3815	0,558
4	_		_		_	0,304	_	_	_	_	0,355	_	0,304	_	0,457

Рекомендации для стальных заготовок (<300 BHN)

			0	бщая глубина — на радиу	/C
номер по каталогу	размер пластины	профиль ТРІ (ниток/дюйм)	1-й проход	2-й проход	3-й проход
NTC-8R/L8EM	8	8 UN	1,21	1,63	2,00
NTC-8R/L8IM	8	8 UN	1,19	1,55	1,88
NTC-8R/L10EM	8	10 UN	0,92	1,27	1,60
NTC-8R/L10IM	8	10 UN	0,90	1,22	1,52
NTC-8R/L12EM	8	12 UN	0,76	1,04	1,32
NTC-8R/L12IM	8	12 UN	0,76	0,93	1,20
NTC-8R/L14EM	8	14 UN	0,68	0,95	1,12
NTC-8R/L14IM	8	14 UN	0,60	0,78	1,04
NTC-8R/L16EM 8	8	16 UN	0,58	0,81	0,96
NTC-8R/L16IM	8	16 UN	0,50	0,68	0,93
NTC-8R/L18EM	8	18 UN	0,48	0,66	0,86
NTC-8R/L18IM	8	18 UN	0,48	0,60	0,83
NDC-68RDR/L-75M	8	8 круглая	1,47	1,65	1,85
NDC-61RDR/L-75M	8	10 круглая	1,11	1,29	1,45
NDC-88RDRD/L-75M	8	8 круглая	1,29	1,75	1,85
NDC-88VR/L-75M	8	8 NPT	1,01	1,72	2,45
NDC-8115VR/L-75M	8	11.5 NPT	0,96	1,37	1,70
NDN-814VR/L-75M	8	14 NPT	0,96	1,22	1,36

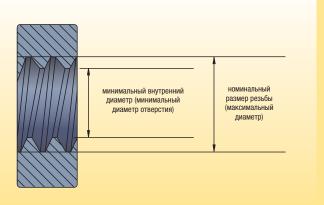
ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

D100 kennametal.com

.005/.003

.006

Трапецеид	10 FLUOR	เทองเด็ง	Acmo	парууч	20								
	цальная	резвоа	ACITIE,	наружн	ая								
шаг ТРІ (ниток/дюйм)	28	20	19	16	14	12	11	10	9	8	7	6	5
глубина	.028	.032	.032	.034	.040	.053	.058	.064	.071	.080	.091	.107	0.128
число проходов	5	6	6	8	8	9	9	10	11	12	14	15	16
						начения для	я бокового в	резания (Х/2	<u>Z)</u>				
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	.039	.041	.050	.063	.074	.095	.112	.138	.180	.256	.008/-	.008/-	.008/-
2	.009	.008	.009	.010	.010	.011	.012	.013	.019	.028	.013/.007	.014/.007	.017/.009
3	.009	.008	.009	.009	.010	.011	.011	.012	.018	.026	.01/.005	.011/.006	.013/.007
4	.007	.007	.007	.009	.009	.010	.010	.011	.016	.023	.008/.004	.009/.005	.011/.006
5	.006	.006	.007	.007	.007	.009	.010	.011	.015	.022	.007/.004	.008/.004	.009/.005
6	.005	.005	.005	.006	.006	.008	.009	.010	.013	.019	.007/.003	.007/.004	.009/.004
7	.003	.004	.005	.005	.005	.007	.008	.010	.011	.017	.006/.003	.007/.004	.008/.004
8		.003	.004	.005	.005	.006	.007	.009	.011	.015	.006/.003	.006/.003	.007/.004
9			.004	.004	.005	.006	.007	.008	.009	.013	.005/.003	.006/.003	.007/.004
10				.004	.005	.006	.007	.008	.009	.013	.005/.003	.005/.003	.006/.003
11				.004	.004	.006	.006	.007	.009	.011	.005/.002	.005/.003	.006/.003
12					.004	.006	.006	.007	.008	.011	.004/.002	.005/.003	.006/.003
13					.004	.005	.006	.006	.007	.010	.004/.002	.005/.003	.006/.003
14						.004	.005	.006	.007	.009	.004/.002	.005/.002	.005/.003
15							.004	.006	.007	.009		.005/.002	.005/.003
16							.004	.006	.006	.008			.005/.003
17								.004	.005	.007	.004/.002	.005/.003	.006/.003
18								.004	.005	.007	.004/.002	.005/.002	.005/.003
19									.005	.006		.005/.002	.005/.003


ПРИМЕЧАНИЕ. При использовании пластин с полным профилем всегда оставляйте дополнительный припуск 0,08-0,13 мм.

шаг ТРІ (ниток/дюйм)	28	20	19	16	14	12	11	10	9	8	7	6	5
глубина	.028	.032	.032	.034	.040	.053	.058	.064	.071	.080	.091	.107	0.128
число проходов	5	6	6	8	8	9	9	10	11	12	14	15	16
		значения для бокового врезания (X/Z)											
порядок проходов	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	.039	.041	.050	.063	.074	.095	.112	.138	.180	.256	.008/-	.008/-	.008/-
2	.009	.008	.009	.010	.010	.011	.012	.013	.019	.028	.013/.007	.014/.007	.017/.009
3	.009	.008	.009	.009	.010	.011	.011	.012	.018	.026	.01/.005	.011/.006	.013/.007
4	.007	.007	.007	.009	.009	.010	.010	.011	.016	.023	.008/.004	.009/.005	.011/.006
5	.006	.006	.007	.007	.007	.009	.010	.011	.015	.022	.007/.004	.008/.004	.009/.005
6	.005	.005	.005	.006	.006	.008	.009	.010	.013	.019	.007/.003	.007/.004	.009/.004
7	.003	.004	.005	.005	.005	.007	.008	.010	.011	.017	.006/.003	.007/.004	.008/.004
8		.003	.004	.005	.005	.006	.007	.009	.011	.015	.006/.003	.006/.003	.007/.004
9			.004	.004	.005	.006	.007	.008	.009	.013	.005/.003	.006/.003	.007/.004
10				.004	.005	.006	.007	.008	.009	.013	.005/.003	.005/.003	.006/.003
11				.004	.004	.006	.006	.007	.009	.011	.005/.002	.005/.003	.006/.003
12					.004	.006	.006	.007	.008	.011	.004/.002	.005/.003	.006/.003
13					.004	.005	.006	.006	.007	.010	.004/.002	.005/.003	.006/.003
14						.004	.005	.006	.007	.009	.004/.002	.005/.002	.005/.003
15							.004	.006	.007	.009		.005/.002	.005/.003
16							.004	.006	.006	.008			.005/.003
17								.004	.005	.007	.004/.002	.005/.003	.006/.003
18								.004	.005	.007	.004/.002	.005/.002	.005/.003
19									.005	.006		.005/.002	.005/.003
20										.006			.005/.003

kennametal.com D101

В следующих таблицах указан наибольший шаг резьбы, который допустим при внутреннем резьбонарезании с использованием пластин Top Notch для V-образной резьбы с углом 60° и трапецеидальной резьбы Acme.

Предельные размеры метрической V-образной резьбы с углом 60° Ограничения для нарезания внутренней V-образной резьбы с углом 60° пластинами NT-1 и NT-2

ТРІ (ниток		альный резьбы	минимальный диаметр резьбы (мм)			
на дюйм)	NT-1	NT-2	NT-1	NT-2		
4,00	M48 x 4.00	-	43,67	-		
3,00	M42 x 3.00	-	38,75	-		
2,50	M39 x 2.50	M24 x 2,50	36,29	21,29		
2,00	M33 x 2.00	M15 x 2,00	30,84	12,84		
1,75	M32 x 1.75	M15 x 1,75	30,11	13,11		
1,50	M32 x 1.50	M15 x 1,50	30,38	13,38		
1,25	M29 x 1.29	M14 x 1,25	27,65	12,65		
1,00*	M27 x 1.00	M14 x 1,00	25,92	12,92		
0,75	M22 x 0.75	M12 x 0,75	21,19	11,19		

^{*} Шаг резьбы 1 мм и меньше может быть нарезан с помощью пластины NT-2, обеспечивающей диаметр внутренней резьбы 25 мм или больше (11 мм или больше с применением пластины NT-1).

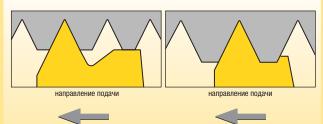
Ограничения для нарезания внутренней V-образной резьбы с углом 60° пластинами NT-3 и NT-4

<u> </u>				
TPI (ниток на дюйм)	номинальный размер резьбы	минимальный диаметр резьбы (мм)		
6,00**	M76 x 6.00	69,50		
5,50**	M73 x 5.50	67,05		
5,00	M70 x 5.00	64,59		
4,00	M64 x 4.00	59,67		
3,00	M52 x 3.00	48,75		
2,50	M48 x 2.50	45,29		
2,00	M42 x 2.00	39,84		
1,75	M40 x 1.75	38,11		
1,50*	M38 x 1.50	36,38		

^{*} Шаг резьбы 1,5 мм и меньше может быть нарезан, если внутренний диаметр резьбы составляет 35 мм или больше.
** Только пластина NT-4.

Предельные размеры трапецеидальной резьбы Асте Ограничения для нарезания внутренней резьбы Асте пластинами NA и NAS-2, -3, -4 и -6

ТРІ (ниток	номинальный размер резьбы	миним: диаметр ро	альный езьбы (мм)
на дюйм)	NT-1	NT-1	NT-2
2**	5	4.500	114.3
2-1/2**	4-1/2	4.100	104.1
3**	4	3.665	93.1
4	3-1/2	3.250	82.6
5	3	2.800	71.1
6	2-1/2	2.333	59.3
8	2-1/4	2.125	54.0
10	2	1.900	48.3
12	1-3/4	1.667	42.4
14	1-5/8	1.554	39.5
16*	1-1/2	1.438	36.5


^{*} Нарезание резьбы 16 ниток/дюйм и больше возможно, если внутренний диаметр равен 36,5 мм (1,438") или больше. ** Только пластина NA-6.

Для обеспечения достаточного зазора для нарезания резьбы с крупным шагом и многозаходной резьбы на главной режущей кромке пластины может быть выполнен дополнительный вспомогательный задний угол. Модифицированные стандартные пластины могут использоваться для формирования резьбы с параметрами, выходящими за указанные границы.

Рекомендации по нарезанию резьбы с V-образным профилем 60°

Пластина NTC для обработки вершины резьбы с шагом $P \le 2$ мм и менее.

Пластина NTC для обработки вершины резьбы с шагом $P \ge 3$ мм и более.

ПРИМЕЧАНИЕ. Пластины NTC автоматически регулируют размер впадины профиля в соответствии с размерами вершины. В связи с этим перед использованием пластин NTC проверьте значения наружного или внутреннего диаметра при вершине резьбы для получения корректных размеров резьбы.

Рекомендации по нарезанию резьбы с V-образным профилем 60°

номер пластины по каталогу	радиус при вершине пластины (мм)	радиус резьбы по MIL-S-8879A (мм)
NJ-3014R/L12	0,317/0,342	0,317/0,381
NJK-3008R/L20	0,190/0,215	0,190/0,0228

Примечание по резьбе «J» к каталогу

Контролируемый радиус впадины профиля резьбы (SAE8879C) определен только для наружной резьбы. Для обработки соответствующей внутренней резьбы выберите любую пластину, которая обеспечит нарезание резьбы унифицированного класса 2B, затем выполните растачивание внутреннего диаметра в размер. Информация по определению значений внутреннего диаметра резьбы «J» приведена в SAE8879C, MIL-S-8879C и SAEAS8879D.

Рекомендации по нарезанию резьбы с V-образным профилем 60°

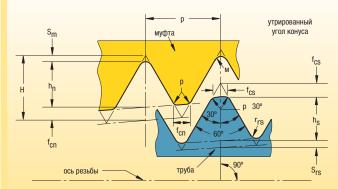
				рекоменд (число нито		рекомендуемый	ТР (шаг резьбы)*
описание режущей пластины	пластина	D (мм)	Е (мм)	наружная	внутренняя	наружная	внутренняя
_	NT-1	1,90	1,11	-	24–12	-	1,00–2,00
«E»	NT-2	28,70	1,90	36–8	20–7	0,70–3,00	1,25–3,50
	NT-2-K	28,70	1,90	36–8	20–7	0,70–3,00	1,25–3,50
радиус	NTF-2	15,75	1,01	44–14	24–12	0,60-1,75	1,00–2,00
«D»	NTK-2	15,75	1,01	44–14	24–12	0,60-1,75	1,00-2,00
NT- NTP- NT-K	NTP-2	28,70	1,90	36–8	20–7	0,70-3,0	1,25–3,50
NT-C	NT-3	37,59	2,46	20–6	12–5	1,25–4,00	2,00-5,00
направление	NT-3-K	37,59	2,46	20–6	12–5	1,25–4,00	2,00-5,00
подачи	NT-3-C	37,59	2,46	11–6	6 (только)	2,50-4,00	4,00 (только)
«E»	NT-3-CK	37,59	2,46	11–6	6 (только)	2,50-4,00	4,00 (только)
	NTF-3	21,08	1,37	44–10	24–9	0,60-2,50	1,00-2,50
радиус	NTK-3	21,08	1,37	44–10	24–9	0,60-2,50	1,00-2,50
NTF-	NTP-3	37,59	2,46	20–6	12–5	1,25-4,00	2,00-5,00
NTK	NT-4	49,78	3,22	20–4	12–4	1,25–6,25	2,00-6,25
направление	NT-4-K	49,78	3,22	20–4	12–4	1,25–6,25	2,00-6,25
подачи	NT-4-C	49,78	3,22	11–4 1/2	6–4 1/2	2,50-5,50	4,00-5,50
	NT-4-CK	49,78	3,22	11–4 1/2	6–4 1/2	2,50-5,50	4,00-5,50
	NTF-4	21,08	1,37	44–10	24–9	0,60-2,50	1,00–2,50
	NTK-4	21,08	1,37	44–10	24–9	0,60-2,50	1,00–2,50
	NTP-4	49,78	3,22	20–4	12–4	1,25–6,25	2,00-6,25

^{*} На основании величины радиуса пластины и параметров резьбы класса 2А и 2В.

Формы резьб API • Рекомендации по применению пластин, формирующих резьбу API для трубных соединений

профиль	пластина	Kennametal	тип	минимальный	
резьбы	полный профиль	неполный профиль	соединения	размер муфты*	
V038R 2" TPF 4 TPI	NDC-4038R/L2 4-E/IR4API382	ND-3038R/L	2-3/8 АРІ гладкопроходное 2-7/8 АРІ гладкопроходное 3-1/2 АРІ гладкопроходное 4 АРІ гладкопроходное 4-1/2 АРІ гладкопроходное 5-1/2 АРІ гладкопроходное 6-5/8 АРІ гладкопроходное 4 АРІ широкопроходное АРІ #23, АРІ #26, АРІ #31, АРІ #35, АРІ #36, АРІ #40, АРІ #44, АРІ #46, АРІ #50	API #31 2-7/8 IF	
V038R 3" TPF 4 TPI	NDC-4038R/L3 4-E/IR4API383	ND-3038R/L	API #56 API #61 API #70 API #77	API #56	
V050 2" TPF 4 TPI	NDC-4050R/L2 4-E/IRAPI502	ND-4050R/L	5-1/2 АРІ широкопроходное 6-5/8 АРІ типовое 6-5/8 АРІ широкопроходное	5-1/2 АРІ широкопроходное	
V050 3" TPF 4 TPI	NDC-4050R/L3 4-E/IR4API503	ND-4050R/L	5-1/2 АРІ типовое 7-5/8 АРІ типовое 8-5/8 АРІ типовое	5-1/2 АРІ типовое	
V040 3" TPF 5 TPI	NDC-3040R/L3 NDC-4040R/L3 4-E/IR5API403	ND-3040R/L ND-4040R/L	2-3/8 АРІ типовое 2-7/8 АРІ типовое 3-1/2 АРІ типовое 4-1/2 АРІ типовое	3-1/2 АРІ типовое	

^{*} Минимальный размер муфты, в которой может быть нарезана резьба с использованием стандартной пластины Top Notch, определяется минимальным размером выполненного отверстия.

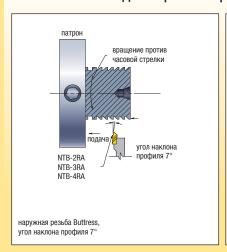

Размеры резьб API •

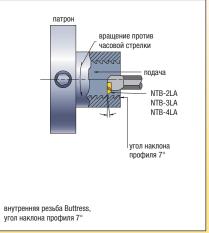
Фланцевые соединения роторов (дюймовая система)

		высота		срез		ширина пло	ского среза			
профиль резьбы	конус, дюйм на фут	резьбы, не усеченная Н	высота резьбы, усеченная h _n =h _s	впадины профиля S _m =S _{rs} f _m =f _{rs}	срез вершины f _{cn} =f _{cs}	вершина f _{cn} =f _{cs}	вершина f _m =f _{rs}	радиус впадины профиля r _m =r _{rs}	радиус скругления в углах r	шаг p
V038R	2	.216005	.121844	.038000	.056161	.065	_	.038	.015	.250
V038R V040 V050	3 3 3	.215379 .172303 .215379	.121381 .117842 .147303	.038000 .020000 .025000	.055998 .034461 .043076	.065 .040 .050	_ _ _	.038 .020 .025	.015 .015 .015	.250
V050	2	.216005	.147804	.025000	.043201	.050		.025	.015 .015	.250

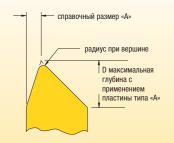
ПРИМЕЧАНИЕ. Все размеры указаны в дюймах.

Формы резьб V-.040 и V-.050




Круглая резьба для обсадных труб систем трубопроводов (значения высоты)

эл	емент резьбы	10 TPI p = .1000	8 TPI p = .1250
Н	= .866p	.08660	.10825
$H_s = h_n$	= .626p007	.05560	.07125
$s_{rs} = s_{m}$	= .120p + .002	.01400	.01700
$S_{cs} = S_{cn}$	= .120p + .005	.01700	.02000


Пластины NTB-A для нарезания резьбы Buttress (угол наклона профиля 7°) • Тип Push

Справочные размеры

Угол врезания по отношению к толщине снимаемой стружки Угол наклона профиля 7°

пластина NTB-A

пластина	D (дюйм)	«А» справ. (дюйм)	радиус при вершине (дюйм)	шаг, измеренный по максимальным радиусам
NTB-2A	.133	.024	.002–.004	16-20 ниток резьбы на дюйм
NTB-3A	.171	.031	.005–.008	8-16 ниток резьбы на дюйм
NTB-4A	.218	.049	.008012	4-6 ниток резьбы на дюйм

ПРИМЕЧАНИЕ. Для обеспечения сбалансированной толщины снимаемой стружки рекомендуется использовать угол врезания 15°.

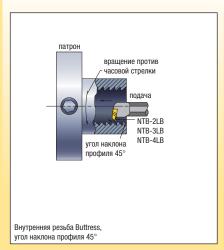
Ограничения для внутреннего резьбонарезания

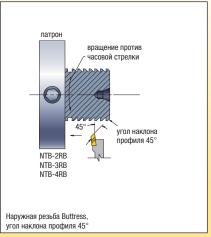
Ограничения для нарезания внутренней резьбы Buttress пластинами NTB-2A

Ограничения для нарезания внутренней резьбы Buttress пластинами NTB-3 и NTB-4A

ТРІ (ниток на дюйм)	номинальный размер резьбы	минимальный внутренний диаметр (дюйм)	ТРІ (ниток на дюйм)	номинальный размер резьбы	минимальный внутренний диаметр (дюйм)
8	1-3/4	1.600	4*	2-1/2	2.200
10	1-5/8	1.505	5	2-1/4	2.010
			6	2	1.800
12	1-1/2	1.400	8	1-3/4	1.600
16	1–1/4	1.175	10	1-5/8	1.505
20	1-1/16	1.002	12**	1-1/2	1.400

Таблица сравнения числа ниток на дюйм и максимального радиуса впадины профиля (дюймовая система)


ТРІ (ниток на дюйм)	20	16	12	10	8	6	5	4	3	2-1/2	2	1-1/2	1-1/4	1
максимальный радиус впадины профиля	.0036	.0045	.0059	.0071	.0089	.0119	.0143	.0179	.0238	.0268	.0375	.0476	.0572	.0714


ПРИМЕЧАНИЕ. Пластины для нарезания специальных резьб Buttress доступны по запросу.

^{*} Только пластина NTB-4A.
** Нарезание резьбы 16 или 20 ниток/дюйм возможно, если внутренний диаметр равен 1,375" или больше.

Американская резьба (45° зазор стороны сбегания): Пластины NTB-B • Тип PULL

Справочные размеры

Угол врезания по отношению к толщине снимаемой стружки угол наклона профиля 45°

пластина	D	«А» справ.	радиус при	шаг, измеренный
	(дюйм)	(дюйм)	вершине (дюйм)	по максимальным радиусам
NTB-3B	.171	.031	.005–.004	8–16 ниток резьбы на дюйм

ПРИМЕЧАНИЕ. Для обеспечения сбалансированной толщины снимаемой стружки рекомендуется использовать врезание под углом 15° в направлении от патрона.

Ограничения для внутреннего резьбонарезания

Ограничения для нарезания внутренней резьбы Buttress пластинами NTB-2B Ограничения для нарезания внутренней резьбы Buttress пластинами NTB-3 и NTB-4A

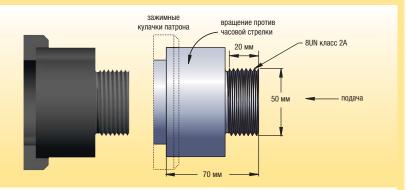
ТРІ (ниток на дюйм)	номинальный размер резьбы	минимальный внутренний диаметр (дюйм)	ТРІ (ниток на дюйм)	номинальный размер резьбы	минимальный внутренний диаметр (дюйм)
8	1-3/4	1.600	4*	2-7/8	2.575
10	1-5/8	1.505	5	2-3/4	2.510
12	1-1/2	1.400	6	2-3/8	2.175
16	1–1/4	1.175	8	2-1/8	1.975
20	1-1/16	1.002	10	1-7/8	1.755
			12	1-5/8	1.525
			16	1-1/2	1.407
			20	1-7/16	1.378

^{*} Только пластина NTB-4B.

Необходимые исходные данные

Чертеж детали

обрабатываемый материал: 316SS, 200 HB профиль резьбы: 8UN класс точности: 2A


операция: наружное резьбонарезание диаметр резьбы: 50 мм, глубина 20 мм

Инструментальная наладка

инструмент: 20 х 20 мм

направление вращения шпинделя: против часовой стрелки

подача: в сторону зажимного патрона

Последовательность выполнения операции резьбонарезания

Шаг 1 🖣

Выбор метода резьбонарезания

Необходимые исходные данные:

- Тип операции (наружная).
- Направление вращения шпинделя.
 Вращение против часовой стрелки.
- Направление подачи (в сторону зажимного патрона).
- Державка правого исполнения.
- Пластина правого исполнения (ER).
- Стандартная схема резьбонарезания.

Шаг 2 • Выбор пластины

Необходимые исходные данные:

- Профиль резьбы (ISO R262 шаг 1 мм).
- Исполнение пластины (правое ER).

Высокопроизводительный вариант

номер	размер	KCU25/
по каталогу	пластины	KC5025
3ER10IS0	3	•

Обеспечение высокой производительности

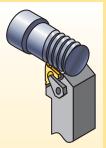
ПРИМЕЧАНИЕ. Используйте пластины максимального размера.

пластина: 3ER10IS0 сплав: KCU25/KC5025 скорость: 150 м/мин

Шаг 3 • Выбор сплава и скорости резания

Необходимые исходные данные:

- Обрабатываемый материал (316SS-200HB).
- Тип операции (наружная).


Рекомендации по выбору марки сплава и скорости обработки

	операция резьбонарезания	нержавеющая сталь
	наружная	общее назначение и высокая производительность
		KC5025
		50-360 м/мин

Шаг 4 • Выбор державки

Необходимые исходные данные:

- Тип операции (наружная);
- Средний диаметр для определения минимального диаметра отверстия (не рассматривается).
- Тип инструмента державка, расточная оправка (державка).
- Исполнение инструмента (правое).
- Размер пластины (16).

Шаг 5 • Выбор опорной пластины

Необходимые исходные данные:

- Профиль резьбы в нитках резьбы на дюйм или шаг (8 ниток резьбы на дюйм);
- Средний диаметр (50 мм);
- Стандартная схема резьбонарезания.
 См. таблицу по выбору опорной пластины Laydown (LT).

Выбираем опорную пластину SM-YE3

ПРИМЕЧАНИЕ: Опорная пластина SM-YE3 поставляется вместе с выбранной державкой.

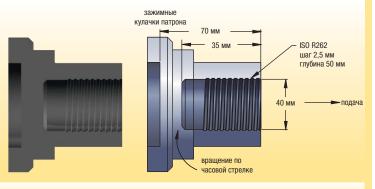
Дополнительно

номер	размер	опорная
по каталогу	пластины	пластина
AL203R	3	SM-YE3

Лучший выбор: державка LSASR-123

Необходимые исходные данные

Чертеж детали


обрабатываемый материал: сталь 4140 профиль резьбы: ISO R262 шаг 2,5 мм метрическая ISO, класс 6G/6H класс точности: операция: внутреннее резьбонарезание

40 мм, глубина 35 мм диаметр резьбы:

Инструментальная наладка

расточная оправка 20 мм инструмент: направление вращения шпинделя:

по часовой стрелке от зажимного патрона подача:

Последовательность выполнения операции резьбонарезания

Выбор метода резьбонарезания

Необходимые исходные данные:

- Тип операции (внутренняя).
- Вращение шпинделя. Вращение по часовой стрелке.
- Направление подачи (в сторону от зажимного патрона).
- Левое исполнение державки.
- Левое исполнение пластины (NL).
- Альтернативная схема резьбонарезания.

Выбор пластины

Необходимые исходные данные:

- Профиль резьбы (метрическая ISO, класс 6G/6H).
- Исполнение пластины (левое NL).

Высокопроизводительный вариант

номер по каталогу	размер пластины	KCU25/ KC5025
3IL25IS0	3	•

Обеспечение высокой производительности

ПРИМЕЧАНИЕ. используйте пластину максимально возможного размера,

входящего в отверстие. пластина: сплав: KCU25/KC5025 скорость: 130 м/мин

Шаг 3 • Выбор сплава и скорости резания

Необходимые исходные данные:

- Обрабатываемый материал (сталь 4010).
- Тип операции (внутренняя).

Рекомендации по выбору марки сплава и скорости обработки

операция резьбонарезани	я сталь
внутренняя	общее назначение и высокая производительность
	KC5025
	40-200 м/мин

Шаг 4 • Выбор державки

Необходимые исходные данные:

- Тип операции (внутренняя).
- Средний диаметр для определения минимального диаметра отверстия при выполнении внутренних операций (40 мм).
- Тип инструмента державка, расточная оправка (расточная оправка).
- Исполнение инструмента (левое).
- Размер пластины (16).

Выбор опорной пластины Необходимые исходные данные:

Шаг 5 •

- Профиль резьбы в нитках резьбы на дюйм или шаг (8 ниток резьбы на дюйм);
- Средний диаметр (50 мм);
- Стандартная схема резьбонарезания. См. таблицу по выбору опорной пластины Laydown (LT).

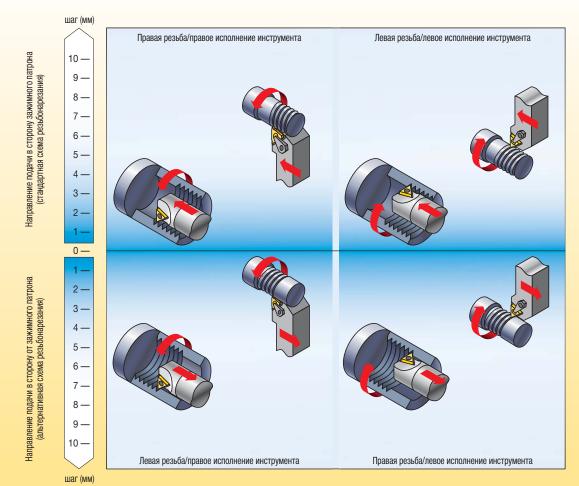
Выбираем опорную пластину SM-YE3

ПРИМЕЧАНИЕ. Для данной операции поставляемая стандартная опорная пластина должна быть заменена на рекомендуемую SM-YE3.

Дополнительно

номер	размер	опорная
по каталогу	пластины	пластина
AVR32D3R	3	SM-YE3

Лучший выбор: державка LSASR-123


Рекомендации по выбору опорной пластины Laydown Threading

Для гарантии высокого качества резьбы и максимальной стойкости инструмента необходимо выбрать подходящую опорную пластину. Требуемые параметры:

- Шаг
- Средний диаметр
- Число заходов
- Направление подачи

ПРИМЕЧАНИЕ. при выборе метода резьбонарезания определяющими факторами должны быть форма детали и стабильный стружкоотвод.

Таблица выбора опорной пластины Laydown

ПРИМЕЧАНИЕ. Для многозаходной резьбы используйте значение угла подъема резьбы вместо шага.

Угол наклона опорной пластины

Для вычисления угла наклона опорной пластины используйте следующую формулу:

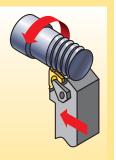
$$\beta = Arctan \frac{P \cdot S}{\pi D_{e}}$$

В = угол подъема резьбы

 $\mathrm{D}_{\mathrm{e}} = \;$ эффективный средний диаметр резьбы

P = 1/TPI

TPI = ниток резьбы на дюйм

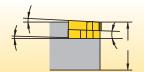

S = число заходов

однозаходная, угол наклона пластины = шаг

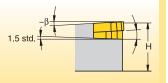
многозаходная, угол наклона пластины = шаг (х) число заходов

Все державки комплектуются опорной пластиной с углом наклона 1,5°. При нарезании стандартной резьбы с углом подъема 1–2° это обеспечит соответствующий задний угол на боковой поверхности зуба резьбовой пластины. Угол подъема резьбы и угол наклона пластины должны быть равны и соответствовать В.

Высота режущей кромки является постоянной величиной в любой комбинации режущей и опорной пластин.


Таблица выбора опорной пластины LT для резьбонарезания • Метрическая система

								onan one		
			, , , , , , , , , , , , , , , , , , ,							
		кавка		код для заказа опорной пластины (мм)						
размер										
пластины	наружная	внутренняя	011.150.00	014 \/50 05	014.1/50.45	стандарт	014)/50 (1)	014 \/=0 4 514	014 \/50 014	014.1/50.011
3 (9,52)	правое исп.	левое исп.	SM-YE3-3P	SM-YE3-2P	SM-YE3-1P	SM-YE3		SM-YE3-1.5N		SM-YE3-3N
3 (9,52)	левое исп.	правое исп.	SM-YI3-3P	SM-YI3-2P	SM-YI3-1P	SM-YI3	SM-YI3-1N		SM-YI3-2N	SM-YI3-3N
4 (12,7)	правое исп.	левое исп.	SM-YE4-3P	SM-YE4-2P	SM-YE4-1P	SM-YE4		SM-YE4-1.5N		SM-YE4-3N
4 (12,7)	левое исп.	правое исп.	SM-YI4-3P	SM-YI4-2P	SM-YI4-1P	SM-YI4	SM-Y14-1N	SM-YI4-1.5N	SM-YI4-2N	SM-YI4-3N
ниток/дюйм		шаг (мм)	средний диаметр (мм)							
72				_		3,1–8	8–21,4	>21,4	21,4–8	8–3,1
		0,35				3,0–8	8–21,3	>21,4	21,4-0	3–8
64		0,00	_	_	_	3,4–9	9–24,1	>24,1	24,1–9	9–3,4
		0,40		_	_	3,5–9,1	9,1–24,3	>24,3	24,3–9,1	9,1–3,5
56		0,45	_	_	_	3,9–10,3	10,3–27,6	>27,6	27,6–10,3	10,3–3,9
_		0,50	_	_	2,8-4,3	4,3–11,4	11,4–30,4	>30,4	30,4–11,4	11,4–4,3
48		_	_	_	3–4,6	4,6–12,1	12,1–32,2	>32,2	32,2–12,1	12,1–4,6
44		_	_	_	3,3–5	5–13,2	13,2–35,1	>35,1	35,1–13,2	13,2–5
_		0,60	_	2,6-3,4	3,4–5,2	5,2-13,7	13,7–36,5	>36,5	36,5–13,7	13,7–5,2
40		_		2,8–3,6	3,6-5,5	5,5–14,5	14,5–38,6	>38,6	38,6–14,5	14,5–5,5
<u> </u>		0,70	_	3,0–4	4–6,1	6,1–16	16-42,6	>42,6	42,6–16	16–6,1
3	36			3,1–4	4–6,1	6,1–16,1	16,1–42,9	>42,9	42,9–16,1	16,1–6,1
_		0,75	2,8-3,2	3,3-4,3	4,3-6,5	6,5–17,1	17,1–45,6	>45,6	45,6–17,1	17,1–6,5
32		_	3–3,4	3,4-4,5	4,5-6,9	6,9–18,1	18,1–48,3	>48,3	48,3–18,1	18,1-6,9
_		0,80	3–3,5	3,5-4,6	4,6–6,9	6,9–18,2	18,2–48,6	>48,6	48,6–18,2	18,2-6,9
28		_	3,4–3,9	3,9–5,2	5,2–7,9	7,9–20,7	20,7–55,1	>55,1	55,1–20,7	20,7–7,9
27		_	3,6-4,1	4,1–5,4	5,4–8,2	8,2–21,4	21,4–57,2	>57,2	57,2–21,4	21,4–8,2
_		1,00	3,8–4,3	4,3–5,7	5,7–8,7	8,7–22,8	22,8–60,8	>60,8	60,8–22,8	22,8–8,7
24		_	4–4,6	4,6–6	6–9,2	9,2–24,1	24,1–64,3	>64,3	64,3–24,1	24,1–9,2
_		1,25	4,7–5,4	5,4–7,1	7,1–10,8	10,9–28,5	28,5–76	>76,0	76–28,5	28,5–10,8
20		_	4,8–5,5	5,5–7,2	7,2–11	11–28,9	29–77,2	>77,2	77,2–28,9	29–11
18		_	5,3–6,1	6,1–8	8–12,2	12,2–32,2	32,2–85,8	>85,8	85,8–32,2	32,2–12,2
		1,50	5,7–6,5	6,5–8,5	8,5–13	13–34,2	34,2–91,2	>91,2	91,2–34,2	34,2–13
16		_	6-6,9	6,9–9	9–13,8	13,8–36,2	36,2–96,5	>96,5	96,5–36,2	36,2-13,8
		1,75	6,6–7,96	7,6–10	10-15,2	15,2–39,9	39,9–106,4	>106,4	106,4–39,9	39,9–15,2
14		_	6,9–7,9	7,9–10,3	10,3–15,7	15,7–41,4	41,4–110,3	>110,3	110,3–41,4	41,4–15,7
13		2.00	7,4–8,5	8,5–11,1	11,1–17	17-44,5	44,5–118,8	>118,8	118,8–44,5	44,5–17
<u> </u>		2,00	7,6–8,7 8–9,2	8,7–11,4	11,4–17,4 12,1–18,4	17,4–45,6	45,6–121,6	>121,6 >128,7	121,6–45,6 128,7–48,2	45,6–17,4 48,2–18,4
11.5		_	8,4-9,6	9,2–12 9,6–12,6	12,1-10,4	18,4–48,2 19,2–50,3	48,3–128,7 50,3–134,3	>120,7	134,3–50,3	50,3–19,2
11.5		_	8,8–10	10–13,1	13,1–20	20–52,6	52,6–140,4	>134,3	140,4–52,6	52,6–20
<u> </u>		2,50	9,5–10,8	10,8–14,2	14,2–21,7	21,7–57	52,6-140,4	>140,4	152–57	57-21,7
	10		9,6–11	11–14,5	14,5–22	22–57,9	57,9–154,4	>154,4	154,4–57,9	57,9–22
9		_	10,7–12,2	12,2–16,1	16,1–24,5	24,5–64,3	64,3–171,6	>171,6	171,6–64,3	64,3–24,5
		3,00	11,4–13	13–17,1	17,1–26	26–68,4	68,4–182,4	>171,0	182,4–68,4	68,4–26
	8		12–13,8	13,8–18,1	18,1–27,6	27,6–72,4	72,4–193	>193,0	193–72,4	72,4–27,6
_		3,50	13,3–15,2	15,2–19,9	19,9–30,4	30,4–79,8	79,8–212,8	>212,8	212,8–79,8	79,8–30,4
-	7		13,8–15,7	15,7–20,7	20,7–31,5	31,5–82,7	82,7–220,6	>220,6	220,6–82,7	82,7–31,5
	<u> </u>	4,00	15,2–17,3	17,3–22,8	22,8–34,7	34,7–91,2	91,2–243,2	>243,2	243,2–91,2	91,2–34,7
	 6	_	16–18,3	18,3–24,1	24,1–36,7	36,7–96,5	96,5–257,4	>257,4	257,4–96,5	96,5–36,7
	-		19–21,7	21,7–28,5	28,5-43,4	43,4–114	114–304	>304,0	304–114	114-43,4
5		5,00 —	19,3–22	22–28,9	28,9-44,1	44,1–115,8	115,8–308,8	>308,8	308,8–115,8	115,8–44,1
4	4,5		21,4–24,5	24,5–32,1	32,1–49	49–128,7	128,7–343,1	>343,1	343,1-128,7	128,7–49
	_		22,7–26	26-34,2	34,2-52,1	52,1-136,8	136,8–364,8	>364,8	364,8-136,8	136,8–52,1
4 -		_	24,1–27,5	27,5–36,2	36,2-55,1	55,1–144,8	144,8–386	>386	386–144,8	144,8–55,1
угол наклона		4.5	3.5	2.5	1.5	0.5	0.0	-0.5	-1.5	
			отандатная суома розьбонарозация альтернативная схема							вная схема
			стандартная схема резьбонарезания (подача в направлении патрона)						резьбонарезания	
			подата в паправлении патрона)						(подача в направлении от патрона)	


- 1. Выберите число ниток резьбы на дюйм или шаг из левых столбцов.
- 2. Следуйте по строке определенного среднего диаметра и соответствующего направления подачи.
- 3. Следуйте по столбцу вверх для определения требуемой опорной пластины с учетом размеров державки и пластины.

стандартная схема резьбонарезания:

Используется при нарезании правой резьбы инструментом в правом исполнении или левой резьбы инструментом в левом исполнении.

альтернативная схема резьбонарезания: Используется при нарезании правой резьбы инструментом в левом исполнении или нарезании левой резьбы инструментом в правом исполнении.

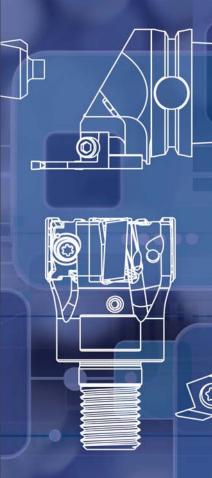
D110 kennametal.com

ПОИСК РЕШЕНИЙ С NOVO

Подбор инструмента не по каталогу, а посредством функций программы NOVO™ экономит время и деньги.

ПОДБОР ПО ПАРАМЕТРАМ

Рекомендации по выбору инструмента формируются в следующей последовательности:


- Определение вида обработки (торцевое фрезерование, прорезание пазов, обработка глухих отверстий и т. д.).
- Совокупность требований (геометрия, материал, точность и т. д.).
- Последовательность обработки (выполнение операций за один или несколько проходов, черновая обработка с последующей чистовой обработкой и т. д.).
- Вывод упорядоченных результатов.

БЫСТРЫЙ ПОИСК

Выбор режущего инструмента из древовидной структуры с помощью иерархического/параметрического поиска:

- Если вы знаете, какое изделие вам нужно, вы можете выполнить быстрый поиск с использованием номера по каталогу или описания изделия.
- Интеллектуальные фильтры существенно уменьшают количество потенциальных решений.
- После выбора инструмента NOVO также предлагает режимы резания и варианты адаптации изделия в соответствии с вашим решением.

С помощью NOVO вы сможете использовать на своем оборудовании правильные инструменты в правильной последовательности. Это обеспечивает безупречное выполнение любой операции и максимально повышает производительность каждой смены. kennametal.com/novo

